python模拟哔哩哔哩滑块登入验证的实现

 更新时间:2020年04月24日 09:07:19   作者:卡卡叮  
这篇文章主要介绍了python模拟哔哩哔哩滑块登入验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

准备工具

  • pip3 install PIL
  • pip3 install opencv-python
  • pip3 install numpy
  • 谷歌驱动

建议指定清华源下载速度会更快点

使用方法 : pip3 install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/

谷歌驱动
谷歌驱动下载链接 :http://npm.taobao.org/mirrors/chromedriver/

前言

本篇文章采用的是cv2的Canny边缘检测算法进行图像识别匹配。

Canny边缘检测算法参考链接:https://www.jb51.net/article/185336.htm

具体使用的是Canny的matchTemplate方法进行模糊匹配,匹配方法用CV_TM_CCOEFF_NORMED归一化相关系数匹配。得出的max_loc就是匹配出来的位置信息。从而达到位置的距离。

难点

  • 由于图像采用放大的效果匹配出的距离偏大,难以把真实距离,并存在误差。
  • 由于哔哩哔哩滑块验证进一步采取做了措施,如果滑动时间过短,会导致验证登入失败。所以我这里采用变速的方法,在相同时间内滑动不同的距离。
  • 误差的存在是必不可少的,有时会导致验证失败,这都是正常现象。

流程

1.实例化谷歌浏览器 ,并打开哔哩哔哩登入页面。

2.点击登陆,弹出滑动验证框。

3.全屏截图、后按照尺寸裁剪各两张。

5.模糊匹配两张图片,从而获取匹配结果以及位置信息 。

6.将位置信息与页面上的位移距离转化,并尽可能少的减少误差 。

7.变速的拖动滑块到指定位置,从而达到模拟登入。

效果图

代码实例

库安装好后,然后填写配置区域后即可运行。

from PIL import Image
from time import sleep
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import cv2
import numpy as np
import math
############ 配置区域 #########

zh='' #账号
pwd='' #密码
 # chromedriver的路径
chromedriver_path = "C:\Program Files (x86)\Google\Chrome\Application\chromedriver.exe"

####### end #########

options = webdriver.ChromeOptions()
options.add_argument('--no-sandbox')
options.add_argument('--window-size=1020,720')
# options.add_argument('--start-maximized') # 浏览器窗口最大化
options.add_argument('--disable-gpu')
options.add_argument('--hide-scrollbars')
options.add_argument('test-type')
options.add_experimental_option("excludeSwitches", ["ignore-certificate-errors",
             "enable-automation"]) # 设置为开发者模式
driver = webdriver.Chrome(options=options, executable_path=chromedriver_path)
driver.get('https://passport.bilibili.com/login')

# 登入
def login():
 driver.find_element_by_id("login-username").send_keys(zh)
 driver.find_element_by_id("login-passwd").send_keys(pwd)
 driver.find_element_by_css_selector("#geetest-wrap > div > div.btn-box > a.btn.btn-login").click()
 print("点击登入")

# 整个图,跟滑块整个图
def screen(screenXpath):
 img = WebDriverWait(driver, 20).until(
  EC.visibility_of_element_located((By.XPATH, screenXpath))
 )
 driver.save_screenshot("allscreen.png") # 对整个浏览器页面进行截图
 left = img.location['x']+160 #往右
 top = img.location['y']+60 # 往下
 right = img.location['x'] + img.size['width']+230 # 往左
 bottom = img.location['y'] + img.size['height']+110 # 往上
 im = Image.open('allscreen.png')
 im = im.crop((left, top, right, bottom)) # 对浏览器截图进行裁剪
 im.save('1.png')
 print("截图完成1")
 screen_two(screenXpath)
 screen_th(screenXpath)
 matchImg('3.png','2.png')

# 滑块部分图
def screen_two(screenXpath):
 img = WebDriverWait(driver, 20).until(
  EC.visibility_of_element_located((By.XPATH, screenXpath))
 )
 left = img.location['x'] + 160
 top = img.location['y'] + 80
 right = img.location['x'] + img.size['width']-30
 bottom = img.location['y'] + img.size['height'] + 90
 im = Image.open('allscreen.png')
 im = im.crop((left, top, right, bottom)) # 对浏览器截图进行裁剪
 im.save('2.png')
 print("截图完成2")

# 滑块剩余部分图
def screen_th(screenXpath):
 img = WebDriverWait(driver, 20).until(
  EC.visibility_of_element_located((By.XPATH, screenXpath))
 )
 left = img.location['x'] + 220
 top = img.location['y'] + 60
 right = img.location['x'] + img.size['width']+230
 bottom = img.location['y'] + img.size['height'] +110
 im = Image.open('allscreen.png')
 im = im.crop((left, top, right, bottom)) # 对浏览器截图进行裁剪
 im.save('3.png')
 print("截图完成3")

#图形匹配
def matchImg(imgPath1,imgPath2):
 imgs = []
 #展示
 sou_img1= cv2.imread(imgPath1)
 sou_img2 = cv2.imread(imgPath2)
 # 最小阈值100,最大阈值500
 img1 = cv2.imread(imgPath1, 0)
 blur1 = cv2.GaussianBlur(img1, (3, 3), 0)
 canny1 = cv2.Canny(blur1, 100, 500)
 cv2.imwrite('temp1.png', canny1)
 img2 = cv2.imread(imgPath2, 0)
 blur2 = cv2.GaussianBlur(img2, (3, 3), 0)
 canny2 = cv2.Canny(blur2, 100, 500)
 cv2.imwrite('temp2.png', canny2)
 target = cv2.imread('temp1.png')
 template = cv2.imread('temp2.png')
 # 调整大小
 target_temp = cv2.resize(sou_img1, (350, 200))
 target_temp = cv2.copyMakeBorder(target_temp, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 255, 255])
 template_temp = cv2.resize(sou_img2, (200, 200))
 template_temp = cv2.copyMakeBorder(template_temp, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 255, 255])
 imgs.append(target_temp)
 imgs.append(template_temp)
 theight, twidth = template.shape[:2]
 # 匹配跟拼图
 result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
 cv2.normalize( result, result, 0, 1, cv2.NORM_MINMAX, -1 )
 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
 # 画圈
 cv2.rectangle(target,max_loc,(max_loc[0]+twidth,max_loc[1]+theight),(0,0,255),2)
 target_temp_n = cv2.resize(target, (350, 200))
 target_temp_n = cv2.copyMakeBorder(target_temp_n, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 255, 255])
 imgs.append(target_temp_n)
 imstack = np.hstack(imgs)

 cv2.imshow('windows'+str(max_loc), imstack)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

 # 计算距离
 print(max_loc)
 dis=str(max_loc).split()[0].split('(')[1].split(',')[0]
 x_dis=int(dis)+135
 t(x_dis)


#拖动滑块
def t(distances):
 draggable = driver.find_element_by_css_selector('div.geetest_slider.geetest_ready > div.geetest_slider_button')
 ActionChains(driver).click_and_hold(draggable).perform() #抓住
 print(driver.title)
 num=getNum(distances)
 sleep(3)
 for distance in range(1,int(num)):
  print('移动的步数: ',distance)
  ActionChains(driver).move_by_offset(xoffset=distance, yoffset=0).perform()
  sleep(0.25)
 ActionChains(driver).release().perform() #松开


# 计算步数
def getNum(distances):
 p = 1+4*distances
 x1 = (-1 + math.sqrt(p)) / 2
 x2 = (-1 - math.sqrt(p)) / 2
 print(x1,x2)
 if x1>=0 and x2<0:
  return x1+2
 elif(x1<0 and x2>=0):
  return x2+2
 else:
  return x1+2

def main():
 login()
 sleep(5)
 screenXpath = '/html/body/div[2]/div[2]/div[6]/div/div[1]/div[1]/div/a/div[1]/div/canvas[2]'
 screen(screenXpath)
 sleep(5)


if __name__ == '__main__':
 main()

有能力的可以研究一下思路,然后写出更好的解决办法。

到此这篇关于python模拟哔哩哔哩滑块登入验证的实现的文章就介绍到这了,更多相关python 滑块登入验证内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python中is与双等于号“==”的区别示例详解

    python中is与双等于号“==”的区别示例详解

    Python中有很多运算符,下面这篇文章主要给大家介绍了关于python中is与双等于号“==”区别的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
    2017-11-11
  • Python中Django 后台自定义表单控件

    Python中Django 后台自定义表单控件

    本篇文章主要介绍了Python中Django 后台自定义表单控件,其实 django 已经为我们提供了一些可用的表单控件,比如:多选框、单选按钮等,有兴趣的开业了解一下。
    2017-03-03
  • python退出循环的方法

    python退出循环的方法

    在本篇文章里小编给大家整理的是关于python如何退出循环的相关知识点内容,需要的朋友们可以参考下。
    2020-06-06
  • 解决python flask中config配置管理的问题

    解决python flask中config配置管理的问题

    今天小编就为大家分享一篇解决python flask中config配置管理的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python http接口自动化脚本详解

    python http接口自动化脚本详解

    这篇文章主要为大家详细介绍了python http接口自动化脚本,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Python爬取肯德基官网ajax的post请求实现过程

    Python爬取肯德基官网ajax的post请求实现过程

    这篇文章主要介绍了Python爬取肯德基官网ajax的post请求实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家学有所得,多多进步
    2021-10-10
  • Python 必须了解的5种高级特征

    Python 必须了解的5种高级特征

    Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,作者列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!
    2020-09-09
  • 如何使用Python的Requests包实现模拟登陆

    如何使用Python的Requests包实现模拟登陆

    这篇文章主要为大家详细介绍了使用Python的Requests包模拟登陆,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python编程之基于概率论的分类方法:朴素贝叶斯

    Python编程之基于概率论的分类方法:朴素贝叶斯

    这篇文章主要介绍了Python编程之基于概率论的分类方法:朴素贝叶斯,简单介绍了其概述,贝叶斯理论和条件概率,以及朴素贝叶斯的原理等相关内容,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • python中使用%与.format格式化文本方法解析

    python中使用%与.format格式化文本方法解析

    这篇文章主要介绍了python中使用%与.format格式化文本方法解析,具有一定借鉴价值,需要的朋友可以参考下
    2017-12-12

最新评论