python中读入二维csv格式的表格方法详解(以元组/列表形式表示)
如何去读取一个没有表头的二维csv文件(如下图所示)?
并以元组的形式表现数据:
((1.0, 0.0, 3.0, 180.0), (2.0, 0.0, 2.0, 180.0), (3.0, 0.0, 1.0, 180.0), (4.0, 0.0, 0.0, 180.0), (5.0, 0.0, 3.0, 178.0))
方法一,使用python内建的数据处理库:
#python自带的库 rows = open('allnodes.csv','r',encoding='utf-8').readlines() lines = [x.rstrip() for x in rows]#去掉每行数据的/n转义字符 lines[0] = '1,0,3,180'#手动去掉第一行的csv开始符号 data = []#使用列表读取是因为列表长度是可变的,而元组不可。 [data.append(eval(i)) for i in lines]#将每一行数据以子列表的形式加入到data中 allnodes = tuple(data)#将列表类型转化为元组,若想用二维列表的形式读取即删掉此行语句 print(allnodes)
out:((1, 0, 3, 180), (2, 0, 2, 180), (3, 0, 1, 180), (4, 0, 0, 180), (5, 0, 3, 178), (6, 0, 2, 178), (7, 0, 1, 178), (8, 0, 0, 178),...,(29484, -40, 0, 0))
方法二,使用pandas库:
import pandas as pd df = pd.read_csv('allnodes.csv',header = None)#因为没有表头,不把第一行作为每一列的索引 data = [] for i in df.index: data.append(tuple(df.values[i])) allnodes = tuple(data)#若想用二维列表的形式读取即删掉此行语句 print(allnodes)
out: ((1.0, 0.0, 3.0, 180.0), (2.0, 0.0, 2.0, 180.0), (3.0, 0.0, 1.0, 180.0), (4.0, 0.0, 0.0, 180.0), (5.0, 0.0, 3.0, 178.0), (6.0, 0.0, 2.0, 178.0), (7.0, 0.0, 1.0, 178.0), (8.0, 0.0, 0.0, 178.0),..., (29484.0, -40.0, 0.0, 0.0))
小结:用python自带的库进行读取的时候可能稍快,但对于大型的多维数据处理,使用pandas可进行更方面,灵活,可视化的操作。
到此这篇关于python中读入二维csv格式的表格方法详解(以元组/列表形式表示)的文章就介绍到这了,更多相关python读入二维csv文件内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库
这篇文章主要介绍了详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2021-01-01Tensorflow2.4使用Tuner选择模型最佳超参详解
这篇文章主要介绍了Tensorflow2.4使用Tuner选择模型最佳超参详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-11-11Python dateutil库简化日期时间处理利器使用场景实践
在Python中,处理日期和时间是常见的任务之一,dateutil库是Python标准库中datetime模块的扩展,提供了许多方便的工具和函数,简化了日期和时间的操作2023-12-12
最新评论