C++实现有向图的邻接表表示

 更新时间:2020年04月26日 11:45:01   作者:ChanJose  
这篇文章主要为大家详细介绍了C++实现有向图的邻接表表示,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了C++有向图的邻接表表示,供大家参考,具体内容如下

一、思路:

有向图的插入有向边、删除边、删除顶点和无向图的有区别。其他的和无向图的类似。

1.插入有向边<e1, e2>

只需要插入<e1, e2>边就行,不需要插入对称边<e2, e1>

2.删除边<e1,e2>:

 只需要删除<e1, e2>边就行,不需要仔找对称边<e2, e1>进行删除。

3.删除顶点v:

首先,要在邻接表中删除以v为头的边<v, w>;

同时,也要在邻接表中删除以v为尾的边<k, v>, 不能通过对称边来找,只能一个个顶点找,浪费时间。

二、实现程序

1.DirectedGraph.h:有向图

#ifndef DirectedGraph_h
#define DirectedGraph_h
#include <iostream>
using namespace std;
 
const int DefaultVertices = 30;
 
template <class T, class E>
struct Edge { // 边结点的定义
 int dest; // 边的另一顶点位置
 E cost; // 表上的权值
 Edge<T, E> *link; // 下一条边链指针
};
 
template <class T, class E>
struct Vertex { // 顶点的定义
 T data; // 顶点的名字
 Edge<T, E> *adj; // 边链表的头指针
};
 
template <class T, class E>
class Graphlnk {
public:
 const E maxValue = 100000; // 代表无穷大的值(=∞)
 Graphlnk(int sz=DefaultVertices); // 构造函数
 ~Graphlnk(); // 析构函数
 void inputGraph(); // 建立邻接表表示的图
 void outputGraph(); // 输出图中的所有顶点和边信息
 T getValue(int i); // 取位置为i的顶点中的值
 E getWeight(int v1, int v2); // 返回边(v1, v2)上的权值
 bool insertVertex(const T& vertex); // 插入顶点
 bool insertEdge(int v1, int v2, E weight); // 插入边
 bool removeVertex(int v); // 删除顶点
 bool removeEdge(int v1, int v2); // 删除边
 int getFirstNeighbor(int v); // 取顶点v的第一个邻接顶点
 int getNextNeighbor(int v,int w); // 取顶点v的邻接顶点w的下一邻接顶点
 int getVertexPos(const T vertex); // 给出顶点vertex在图中的位置
 int numberOfVertices(); // 当前顶点数
private:
 int maxVertices; // 图中最大的顶点数
 int numEdges; // 当前边数
 int numVertices; // 当前顶点数
 Vertex<T, E> * nodeTable; // 顶点表(各边链表的头结点)
};
 
// 构造函数:建立一个空的邻接表
template <class T, class E>
Graphlnk<T, E>::Graphlnk(int sz) {
 maxVertices = sz;
 numVertices = 0;
 numEdges = 0;
 nodeTable = new Vertex<T, E>[maxVertices]; // 创建顶点表数组
 if(nodeTable == NULL) {
  cerr << "存储空间分配错误!" << endl;
  exit(1);
 }
 for(int i = 0; i < maxVertices; i++)
  nodeTable[i].adj = NULL;
}
 
// 析构函数
template <class T, class E>
Graphlnk<T, E>::~Graphlnk() {
 // 删除各边链表中的结点
 for(int i = 0; i < numVertices; i++) {
  Edge<T, E> *p = nodeTable[i].adj; // 找到其对应链表的首结点
  while(p != NULL) { // 不断地删除第一个结点
   nodeTable[i].adj = p->link;
   delete p;
   p = nodeTable[i].adj;
  }
 }
 delete []nodeTable; // 删除顶点表数组
}
 
// 建立邻接表表示的图
template <class T, class E>
void Graphlnk<T, E>::inputGraph() {
 int n, m; // 存储顶点树和边数
 int i, j, k;
 T e1, e2; // 顶点
 E weight; // 边的权值
 
 cout << "请输入顶点数和边数:" << endl;
 cin >> n >> m;
 cout << "请输入各顶点:" << endl;
 for(i = 0; i < n; i++) {
  cin >> e1;
  insertVertex(e1); // 插入顶点
 }
 
 cout << "请输入图的各边的信息:" << endl;
 i = 0;
 while(i < m) {
  cin >> e1 >> e2 >> weight;
  j = getVertexPos(e1);
  k = getVertexPos(e2);
  if(j == -1 || k == -1)
   cout << "边两端点信息有误,请重新输入!" << endl;
  else {
   insertEdge(j, k, weight); // 插入边
   i++;
  }
 } // while
}
 
// 输出有向图中的所有顶点和边信息
template <class T, class E>
void Graphlnk<T, E>::outputGraph() {
 int n, m, i;
 T e1, e2; // 顶点
 E weight; // 权值
 Edge<T, E> *p;
 
 n = numVertices;
 m = numEdges;
 cout << "图中的顶点数为" << n << ",边数为" << m << endl;
 for(i = 0; i < n; i++) {
  p = nodeTable[i].adj;
  while(p != NULL) {
   e1 = getValue(i); // 有向边<i, p->dest>
   e2 = getValue(p->dest);
   weight = p->cost;
   cout << "<" << e1 << ", " << e2 << ", " << weight << ">" << endl;
   p = p->link; // 指向下一个邻接顶点
  }
 }
}
 
// 取位置为i的顶点中的值
template <class T, class E>
T Graphlnk<T, E>::getValue(int i) {
 if(i >= 0 && i < numVertices)
  return nodeTable[i].data;
 return NULL;
}
 
// 返回边(v1, v2)上的权值
template <class T, class E>
E Graphlnk<T, E>::getWeight(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  Edge<T , E> *p = nodeTable[v1].adj; // v1的第一条关联的边
  while(p != NULL && p->dest != v2) { // 寻找邻接顶点v2
   p = p->link;
  }
  if(p != NULL)
   return p->cost;
 }
 return maxValue; // 边(v1, v2)不存在,就存放无穷大的值
}
 
// 插入顶点
template <class T, class E>
bool Graphlnk<T, E>::insertVertex(const T& vertex) {
 if(numVertices == maxVertices) // 顶点表满,不能插入
  return false;
 nodeTable[numVertices].data = vertex; // 插入在表的最后
 numVertices++;
 return true;
}
 
// 插入边
template <class T, class E>
bool Graphlnk<T, E>::insertEdge(int v1, int v2, E weight) {
 if(v1 >= 0 && v1 < numVertices && v2 >= 0 && v2 < numVertices) {
  Edge<T, E> *p = nodeTable[v1].adj; // v1对应的边链表头指针
  while(p != NULL && p->dest != v2) // 寻找邻接顶点v2
   p = p->link;
  if(p != NULL) // 已存在该边,不插入
   return false;
  p = new Edge<T, E>; // 创建新结点
  p->dest = v2;
  p->cost = weight;
  p->link = nodeTable[v1].adj; // 链入v1边链表
  nodeTable[v1].adj = p;
  numEdges++;
  return true;
 }
 return false;
}
 
// 有向图删除顶点较麻烦
template <class T, class E>
bool Graphlnk<T, E>::removeVertex(int v) {
 if(numVertices == 1 || v < 0 || v > numVertices)
  return false; // 表空或顶点号超出范围
 
 Edge<T, E> *p, *s;
 // 1.清除顶点v的边链表结点w 边<v,w>
 while(nodeTable[v].adj != NULL) {
  p = nodeTable[v].adj;
  nodeTable[v].adj = p->link;
  delete p;
  numEdges--; // 与顶点v相关联的边数减1
 } // while结束
 // 2.清除<w, v>,与v有关的边
 for(int i = 0; i < numVertices; i++) {
  if(i != v) { // 不是当前顶点v
   s = NULL;
   p = nodeTable[i].adj;
   while(p != NULL && p->dest != v) {// 在顶点i的链表中找v的顶点
    s = p;
    p = p->link; // 往后找
   }
   if(p != NULL) { // 找到了v的结点
    if(s == NULL) { // 说明p是nodeTable[i].adj
     nodeTable[i].adj = p->link;
    } else {
     s->link = p->link; // 保存p的下一个顶点信息
    }
    delete p; // 删除结点p
    numEdges--; // 与顶点v相关联的边数减1
   }
  }
 }
 numVertices--; // 图的顶点个数减1
 nodeTable[v].data = nodeTable[numVertices].data; // 填补,此时numVertices,比原来numVertices小1,所以,这里不需要numVertices-1
 nodeTable[v].adj = nodeTable[numVertices].adj;
 // 3.要将填补的顶点对应的位置改写
 for(int i = 0; i < numVertices; i++) {
  p = nodeTable[i].adj;
  while(p != NULL && p->dest != numVertices) // 在顶点i的链表中找numVertices的顶点
   p = p->link; // 往后找
  if(p != NULL) // 找到了numVertices的结点
   p->dest = v; // 将邻接顶点numVertices改成v
 }
 return true;
}
 
// 删除边
template <class T, class E>
bool Graphlnk<T, E>::removeEdge(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  Edge<T, E> * p = nodeTable[v1].adj, *q = NULL;
  while(p != NULL && p->dest != v2) { // v1对应边链表中找被删除边
   q = p;
   p = p->link;
  }
  if(p != NULL) { // 找到被删除边结点
   if(q == NULL) // 删除的结点是边链表的首结点
    nodeTable[v1].adj = p->link;
   else
    q->link = p->link; // 不是,重新链接
   delete p;
   return true;
  }
 }
 return false; // 没有找到结点
}
 
// 取顶点v的第一个邻接顶点
template <class T, class E>
int Graphlnk<T, E>::getFirstNeighbor(int v) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 对应链表第一个边结点
  if(p != NULL) // 存在,返回第一个邻接顶点
   return p->dest;
 }
 return -1; // 第一个邻接顶点不存在
}
 
// 取顶点v的邻接顶点w的下一邻接顶点
template <class T, class E>
int Graphlnk<T, E>::getNextNeighbor(int v,int w) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 对应链表第一个边结点
  while(p != NULL && p->dest != w) // 寻找邻接顶点w
   p = p->link;
  if(p != NULL && p->link != NULL)
   return p->link->dest; // 返回下一个邻接顶点
 }
 return -1; // 下一个邻接顶点不存在
}
 
// 给出顶点vertex在图中的位置
template <class T, class E>
int Graphlnk<T, E>::getVertexPos(const T vertex) {
 for(int i = 0; i < numVertices; i++)
  if(nodeTable[i].data == vertex)
   return i;
 return -1;
}
 
// 当前顶点数
template <class T, class E>
int Graphlnk<T, E>::numberOfVertices() {
 return numVertices;
}
 
#endif /* DirectedGraph_h */

2.main.cpp

/*
 测试数据:
5 7
0 1 2 3 4
0 1 10
0 3 30
0 4 100
1 2 50
2 4 10
3 2 20
3 4 60
 */
 
#include "DirectedGraph.h"
 
int main(int argc, const char * argv[]) {
 Graphlnk<char, int> st; // 声明对象
 bool finished = false;
 int choice;
 char e1, e2, next;
 int weight;
 
 while(!finished) {
  cout << "[1]创建基于邻接表的有向图" << endl;
  cout << "[2]输出图的所有顶点和边信息" << endl;
  cout << "[3]取顶点v的第一个邻接顶点" << endl;
  cout << "[4]取v的邻接顶点w的下一个邻接顶点" << endl;
  cout << "[5]插入顶点" << endl;
  cout << "[6]插入边" << endl;
  cout << "[7]删除顶点" << endl;
  cout << "[8]删除边" << endl;
  cout << "[9]退出" << endl;
  cout << "请输入选择[1-9]:";
  cin >> choice;
  switch(choice) {
   case 1:
    st.inputGraph();
    break;
   case 2:
    st.outputGraph();
    break;
   case 3:
    cout << "请输入顶点:";
    cin >> e1;
    e2 = st.getValue(st.getFirstNeighbor(st.getVertexPos(e1)));
    if(e2)
     cout << "顶点" << e1 << "的第一个邻接顶点为:" << e2 << endl;
    else
     cout << "顶点" << e1 << "没有邻接顶点!" << endl;
    break;
   case 4:
    cout << "请输入顶点v和邻接顶点w:";
    cin >> e1 >> e2;
    next = st.getValue(st.getNextNeighbor(st.getVertexPos(e1), st.getVertexPos(e2)));
    if(next)
     cout << "顶点" << e1 << "的邻接顶点" << e2 << "的下一个邻接顶点为:" << next << endl;
    else
     cout << "顶点" << e1 << "的邻接顶点" << e2 << "没有下一个邻接顶点!" << endl;
    break;
   case 5:
    cout << "请输入要插入的顶点:";
    cin >> e1;
    if(st.insertVertex(e1))
     cout << "插入成功!" << endl;
    else
     cout << "表已满,插入失败!" << endl;
    break;
   case 6:
    cout << "请输入要插入的边的信息:" << endl;
    cin >> e1 >> e2 >> weight;
    st.insertEdge(st.getVertexPos(e1), st.getVertexPos(e2), weight);
    break;
   case 7:
    cout << "请输入要删除的顶点:";
    cin >> e1;
    if(st.removeVertex(st.getVertexPos(e1)))
     cout << "顶点" << e1 << "已删除!" << endl;
    else
     cout << "顶点" << e1 << "不在图中!" << endl;
    break;
   case 8:
    cout << "请输入要删除的边的两个端点:" << endl;
    cin >> e1 >> e2;
    st.removeEdge(st.getVertexPos(e1), st.getVertexPos(e2));
    break;
   case 9:
    finished = true;
    break;
   default:
    cout << "选择输入错误,请重新输入!" << endl;
  }
 }
 return 0;
}

测试结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 深入浅析C/C++ 的条件编译

    深入浅析C/C++ 的条件编译

    条件编译是指预处理的时候根据条件编译的指令有条件的选择源程序中的一部分代码送给编译器进行编译,进行有选择性的操作,防止宏替换的内容重复包含,这篇文章主要介绍了C/C++ 的条件编译,需要的朋友可以参考下
    2022-04-04
  • 详解C++右值引用

    详解C++右值引用

    很多初学者都感觉右值引用晦涩难懂,其实不然。右值引用只不过是一种新的 C++ 语法,真正理解起来有难度的是基于右值引用引申出的2种 C++ 编程技巧,分别为移动语义和完美转发。本节给读者讲解什么是右值引用以及它的基本用法。
    2021-06-06
  • 最大对称字符串的算法

    最大对称字符串的算法

    题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
    2013-03-03
  • C++11模板元编程-std::enable_if示例详解

    C++11模板元编程-std::enable_if示例详解

    这篇文章主要给大家介绍了关于C++11模板元编程-std::enable_if的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • C++实现一行一行读取文本的方法

    C++实现一行一行读取文本的方法

    今天小编就为大家分享一篇C++实现一行一行读取文本的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • C语言中等待socket连接和对socket定位的方法

    C语言中等待socket连接和对socket定位的方法

    这篇文章主要介绍了C语言中等待socket连接和对socket定位的方法,分别为listen()函数和bind()函数的用法,需要的朋友可以参考下
    2015-09-09
  • C/C++如何获取当前系统时间的实例详解

    C/C++如何获取当前系统时间的实例详解

    这篇文章主要介绍了 C/C++如何获取当前系统时间的实例详解的相关资料,这里提供了几种实现方法,帮助大家实现这样的功能,需要的朋友可以参考下
    2017-08-08
  • C++构造函数的一些注意事项总结

    C++构造函数的一些注意事项总结

    构造函数是创建类对象,并且在创建完成前,对类进行初始化的特殊函数,下面这篇文章主要给大家介绍了关于C++构造函数的一些注意事项,需要的朋友可以参考下
    2021-11-11
  • C语言实现扫雷游戏(可以自动展开)

    C语言实现扫雷游戏(可以自动展开)

    这篇文章主要为大家详细介绍了C语言实现扫雷游戏,可以自动展开,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-11-11
  • C++ ReSharper2021激活码永久有效

    C++ ReSharper2021激活码永久有效

    ReSharperC++是为c/c++开发者打造的一款实用Visual Studio扩展插件,这款插件旨在提升开发者的效率,今天给大家分享这款软件的激活方法,需要C++ ReSharper2021激活码的朋友参考下本文
    2021-06-06

最新评论