aws 通过boto3 python脚本打pach的实现方法
脚本要实现的功能:输入instance id
1:将所有的volume take snapshot
2: 获取public ip 并登陆机器执行 ps 命令记录patch前进程状态已经端口状态
3:获取机器所在的elb
4: 从elb中移除当前机器
5:检查snapshots是否完成
6:snapshots完成后patching
7: patching完成后将instance加回到elb
#!/usr/bin/python # vim: expandtab:tabstop=4:shiftwidth=4 ''' script to get ecr info ''' # Reason: disable invalid-name because pylint does not like our naming convention # pylint: disable=invalid-name import time import boto3 import sys import argparse def get_volume(ec2, instanceId): result = [] instance = ec2.Instance(instanceId) volumes = instance.volumes.all() for volume in volumes: print("Volume attached to this instance is :" + volume.id) result.append(volume.id) return result def take_snapByInstance(client, instanceId): response = client.create_snapshots( Description='string', InstanceSpecification={ 'InstanceId': instanceId, 'ExcludeBootVolume': False }, TagSpecifications=[ { 'ResourceType': 'snapshot', 'Tags': [ { 'Key': 'orginName', 'Value': 'patch backup'+ instanceId }, ] }, ], DryRun=False, CopyTagsFromSource='volume' ) print("Creating new snapshots for instances:" + response['Snapshots'][0]['SnapshotId']) return response['Snapshots'][0]['SnapshotId'] def get_publicIp(ec2, instanceId): instance = ec2.Instance(instanceId) publicIp = instance.public_ip_address return publicIp def take_screenshotOfProcess(public_ip): print("Please run this command on your local machine") print('ssh -t ' + public_ip + ' "sudo netstat -tnpl > disk.listen"') print('ssh -t ' + public_ip + ' "sudo ps auxf > disk.ps"') def get_elbInfo(client_elb, ec2, instanceId): bals = client_elb.describe_load_balancers() for elb in bals['LoadBalancerDescriptions']: #print('ELB DNS Name : ' + elb['DNSName']) #check if the elb is the elb of instance if instanceId in elb['Instances']: print("found elb " + elb['DNSName']) else: pass def remove_fromElb(client_elb, elb, instanceId): response = client_elb.deregister_instances_from_load_balancer( LoadBalancerName='elb', Instances=[ { 'InstanceId': instanceId }, ] ) def add_backElb(client_elb, elb, instanceId): response = client.register_instances_with_load_balancer( LoadBalancerName= elb, Instances=[ { 'InstanceId': instanceId }, ] ) def check_snapStatus(ec2, snaps): snapshot = ec2.Snapshot(snaps) snapshot.load() print(snapshot.state) return snapshot.state def main(ec2, client, instanceId, client_elb): print("going to paching instanceid: " + instanceId) #get volumes volumes = get_volume(ec2, instanceId) #get public ip public_ip = get_publicIp(ec2, instanceId) #take snapshot snaps = take_snapByInstance(client, instanceId) #take screenshot of procss and port take_screenshotOfProcess(public_ip) #get elb info elb = False #elb = get_elbInfo(client_elb, ec2, instanceId) #remove from elb if elb: ans_remove = input("Are you sure to remove the instance from the elb now? Yes/No") if ans_remove == 'Yes': #remove from instance remove_fromElb(client_elb, elb, instanceId) #check snapshot status snapshotStatus = '' check_snapStatus(ec2, snaps) print("checking staus of snapshots") while True: snapshotStatus = check_snapStatus(ec2, snaps) print(snapshotStatus) if snapshotStatus == 'completed': break else: time.sleep(10) #paching paching_cmd = 'Your paching command' print(paching_cmd) #add to elb if elb: ans_add = input("please confirm the patching is over , input yes to continue") if ans_add == 'Yes': add_backElb(client_elb, elb, instanceId) if __name__ == "__main__": ec2 = boto3.resource('ec2', region_name='us-east-1') client = boto3.client('ec2', region_name='us-east-1') client_elb = boto3.client('elb', region_name='us-east-1') main(ec2, client, 'i-abcasdfa111122', client_elb)
注意,本脚本并未包含链接机器并执行命令的部分,仅仅是打印出命令,需要手动执行 take_screenshotOfProcess
已经patch的命令,此部分也参考之前的文章,完全自动化,不需要手动执行
另外Patch命令脚本中并未给出
总结
到此这篇关于aws 通过boto3 python脚本打pach的实现方法的文章就介绍到这了,更多相关aws 通过boto3 python脚本打pach内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python+appium框架原生代码实现App自动化测试详解
这篇文章主要介绍了Python+appium框架原生代码实现App自动化测试详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-03-03Pytorch之nn.Upsample()和nn.ConvTranspose2d()用法详解
nn.Upsample和nn.ConvTranspose2d是PyTorch中用于上采样的两种主要方法,nn.Upsample通过不同的插值方法(如nearest、bilinear)执行上采样,没有可学习的参数,适合快速简单的尺寸增加,而nn.ConvTranspose2d通过可学习的转置卷积核进行上采样2024-10-10
最新评论