使用pyecharts1.7进行简单的可视化大全

 更新时间:2020年05月17日 15:56:16   作者:theskylife  
这篇文章主要介绍了使用pyecharts1.7进行简单的可视化大全,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

近期,又有接触到pyecharts这个包的使用,后面发现这个曾经好用的包发生了一些变化,为了方便大家的使用,这里整理如下:
绘图风格theme:默认WHITE
LIGHT, DARK, WHITE, CHALK, ESSOS, INFOGRAPHIC, MACARONS, PURPLE_PASSION, ROMA, ROMANTIC, SHINE, VINTAGE, WALDEN, WESTEROS, WONDERLAND

1.柱状图绘制

1.1 最基础的柱状图

from pyecharts.charts import Bar,Grid
from pyecharts import options as opts
from pyecharts.globals import ThemeType
import random
import numpy as np
# 准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
#绘图
bar=Bar(init_opts = opts.InitOpts(width='600px',height='400px')) 
bar.add_xaxis(name)
bar.add_yaxis("salery",salery)
bar.set_global_opts(title_opts=opts.TitleOpts(title="收入情况"))
#仅在notebook中显示
bar.render_notebook()
#在HTML中显示
bar.render("收入情况")

效果图:

1.2 稍微复杂的柱状图

为了减少代码量,此处不再导入包。绘制收入和消费情况,并使用新风格,并添加副标题,使用新版本的链式写法。

#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#绘图
bar=(
  Bar(init_opts = opts.InitOpts(width='600px',height='400px',theme=ThemeType.LIGHT))
  .add_xaxis(name)
  .add_yaxis("salery",salery)
  .add_yaxis("cost",cost)
  .set_global_opts(title_opts=opts.TitleOpts(title="收入及消费情况",subtitle="随机样本"))
)
bar.render_notebook()

#效果图:

1.3 堆叠式柱状图

使用堆叠式柱状图(部分堆叠),并自定义颜色,修改图例的显示位置,不显示数字,改变背景颜色

#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
bar=(
  Bar(init_opts = opts.InitOpts(width='600px',height='400px',bg_color=colors[-1]))
  .add_xaxis(name)
  .add_yaxis("salery",salery,stack="stack_one")
  .add_yaxis("cost",cost,stack="stack_one")
  .add_yaxis("salery_ave",salery_ave)
  .set_colors(colors)
  .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
  .set_global_opts(title_opts=opts.TitleOpts(title="收入、消费及其城市平均收入情况"),
          legend_opts=opts.LegendOpts(type_="scroll", pos_right="right", orient="vertical")
          )
)
bar.render_notebook()

效果展示:

1.3.1 调整标题与图的位置

grid=Grid()
# 分别调整上下左右的位置,参数为像素值或百分比
grid.add(bar,grid_opts=opts.GridOpts(pos_top="30%",pos_bottom="10%",pos_left="10%",pos_right="10%"))
grid.render_notebook()

效果演示

1.4 绘制簇状图

#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
bar=(
  Bar(init_opts = opts.InitOpts(width='600px',height='400px',bg_color=colors[-1]))
  .add_xaxis(name)
  .add_yaxis("salery",salery)
  .add_yaxis("salery_ave",salery_ave)
  .reversal_axis()
  .set_colors(colors)
  .set_series_opts(label_opts=opts.LabelOpts(position="right"))
  .set_global_opts(title_opts=opts.TitleOpts(title="收入、消费及其城市平均收入情况"),
          legend_opts=opts.LegendOpts(type_="scroll", pos_right="right", orient="vertical")
          )
)
bar.render_notebook()

效果图演示

1.5 数据量大时的显示方法

#准备数据
name=[chr(i) for i in range(65,85,1)]
salery=[random.randint(3000,5000) for i in range(20)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(20)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#绘图 修改 orient为vertical,可将滑动按钮移动垂直方向
bar=(
  Bar(init_opts = opts.InitOpts(width='600px',height='400px',bg_color=colors[-1]))
  .add_xaxis(name)
  .add_yaxis("salery",salery)
  .add_yaxis("salery_ave",salery_ave)
  .set_colors(colors)
  .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
  .set_global_opts(title_opts=opts.TitleOpts(title="收入、消费及其城市平均收入情况"),
          legend_opts=opts.LegendOpts(type_="scroll", pos_right="right", orient="vertical"),
          datazoom_opts=[opts.DataZoomOpts(type_="slider")]
          )
)
bar.render_notebook()

演示效果:

2.绘制散点图

2.1 普通散点图

import random
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.globals import ThemeType

#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
scatter=(Scatter(init_opts = opts.InitOpts(width='600px',height='400px',theme=ThemeType.DARK))
    .add_xaxis(name)
    .add_yaxis("salery",salery)
    .add_yaxis("cost",cost)
    .set_global_opts(title_opts=opts.TitleOpts(title="收入与消费情况")))
scatter.render_notebook()

查看效果:

2.2 3D散点图绘制

import random
from pyecharts import options as opts
from pyecharts.charts import Scatter3D
from pyecharts.faker import Faker


#准备数据
data = [(random.randint(0,100),random.randint(0,100),random.randint(0,100)) for i in range(50)]
name=["长","宽","高"]
#绘图
scatter3D=Scatter3D(init_opts = opts.InitOpts(width='600px',height='400px')) #初始化
scatter3D.add(name,data,
     grid3d_opts=opts.Grid3DOpts(
     width=100, depth=100
    ))
scatter3D.set_global_opts(title_opts=opts.TitleOpts(title="散点图"),
             visualmap_opts=opts.VisualMapOpts(
             range_color=Faker.visual_color #颜色映射 
             ))
scatter3D.render_notebook()

效果图:

2.3 带涟漪的散点图

symbol的类型:
“pin”,“rect”,“roundRect”,“diamond”,“arrow”,“triangle”

import random
from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.globals import ThemeType

#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
scatter=(EffectScatter(init_opts = opts.InitOpts(width='600px',height='400px',theme=ThemeType.DARK))
    .add_xaxis(name)
    .add_yaxis("salery",salery,symbol="pin",symbol_size=20,symbol_rotate=180)
    .add_yaxis("cost",cost,symbol="rect",symbol_size=20)
    .set_global_opts(title_opts=opts.TitleOpts(title="收入与消费情况"),
            xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)), #添加网格
            yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True))
            )
    .set_series_opts(effect_opts=opts.EffectOpts(scale=3,period=2)) #调整涟漪的范围和周期
    )
scatter.render_notebook()

效果图如下:

到此这篇关于使用pyecharts1.7进行简单的可视化大全的文章就介绍到这了,更多相关pyecharts1.7 可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python如何基于selenium实现自动登录博客园

    Python如何基于selenium实现自动登录博客园

    这篇文章主要介绍了Python如何基于selenium实现自动登录博客园,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12
  • 解决Django中checkbox复选框的传值问题

    解决Django中checkbox复选框的传值问题

    这篇文章主要介绍了解决Django中checkbox复选框的传值问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python机器学习理论与实战(二)决策树

    python机器学习理论与实战(二)决策树

    这篇文章主要介绍了python机器学习理论与实战第二篇,决策树的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • python 经纬度求两点距离、三点面积操作

    python 经纬度求两点距离、三点面积操作

    这篇文章主要介绍了python 经纬度求两点距离、三点面积操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • Python3中的真除和Floor除法用法分析

    Python3中的真除和Floor除法用法分析

    这篇文章主要介绍了Python3中的真除和Floor除法用法,结合实例形式分析了真除与Floor除法的区别与使用技巧,需要的朋友可以参考下
    2016-03-03
  • Python+Turtle绘制航海王草帽路飞详解

    Python+Turtle绘制航海王草帽路飞详解

    turtle库是一个点线面的简单图像库,在Python2.6之后被引入进来,能够完成一些比较简单的几何图像可视化。本文将利用turtle绘制一个可爱的草帽路飞,感兴趣的可以试一试
    2022-03-03
  • python实现凯撒密码、凯撒加解密算法

    python实现凯撒密码、凯撒加解密算法

    这篇文章主要介绍了python语言编程实现凯撒密码、凯撒加解密算法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-06-06
  • Python OpenCV基于HSV的颜色分割实现示例

    Python OpenCV基于HSV的颜色分割实现示例

    这篇文章主要为大家介绍了Python OpenCV基于HSV的颜色分割实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • python 实现插入排序算法

    python 实现插入排序算法

    python 插入排序算法,需要的朋友可以参考下
    2012-06-06
  • python实现修改固定模式的字符串内容操作示例

    python实现修改固定模式的字符串内容操作示例

    这篇文章主要介绍了python实现修改固定模式的字符串内容操作,结合实例形式详细分析了Python修改固定模式字符串原理、实现方法及相关操作注意事项,需要的朋友可以参考下
    2019-12-12

最新评论