Spark处理数据排序问题如何避免OOM

 更新时间:2020年05月21日 11:00:38   作者:Sheep Sun  
这篇文章主要介绍了Spark处理数据排序问题如何避免OOM,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

错误思想

举个列子,当我们想要比较 一个 类型为 RDD[(Long, (String, Int))] 的RDD,让它先按Long分组,然后按int的值进行倒序排序,最容易想到的思维就是先分组,然后把Iterable 转换为 list,然后sortby,但是这样却有一个致命的缺点,就是Iterable 在内存中是一个指针,不占内存,而list是一个容器,占用内存,如果Iterable 含有元素过多,那么极易引起OOM

 val cidAndSidCountGrouped: RDD[(Long, Iterable[(String, Int)])] = cidAndSidCount.groupByKey()
    // 4. 排序, 取top10
    val result: RDD[(Long, List[(String, Int)])] = cidAndSidCountGrouped.map {
      case (cid, sidCountIt) =>
        // sidCountIt 排序, 取前10
        // Iterable转成容器式集合的时候, 如果数据量过大, 极有可能导致oom
        (cid, sidCountIt.toList.sortBy(-_._2).take(5))
    }

首先,我们要知道,RDD 的排序需要 shuffle, 是采用了内存+磁盘来完成的排序.这样能有效避免OOM的风险,但是RDD是全部排序,所以需要针对性的过滤Key值来进行排序

方法一 利用RDD排序特点

 //把long(即key值)提取出来
    val cids: List[Long] = categoryCountList.map(_.cid.toLong)
    val buffer: ListBuffer[(Long, List[(String, Int)])] = ListBuffer[(Long, List[(String, Int)])]()
    //根据每个key来过滤RDD
    for (cid <- cids) {
      /*
      List((15,(632972a4-f811-4000-b920-dc12ea803a41,10)), (15,(f34878b8-1784-4d81-a4d1-0c93ce53e942,8)), (15,(5e3545a0-1521-4ad6-91fe-e792c20c46da,8)), (15,(66a421b0-839d-49ae-a386-5fa3ed75226f,8)), (15,(9fa653ec-5a22-4938-83c5-21521d083cd0,8)))
      目标:
      (9,List((199f8e1d-db1a-4174-b0c2-ef095aaef3ee,9), (329b966c-d61b-46ad-949a-7e37142d384a,8), (5e3545a0-1521-4ad6-91fe-e792c20c46da,8), (e306c00b-a6c5-44c2-9c77-15e919340324,7), (bed60a57-3f81-4616-9e8b-067445695a77,7)))
       */
      val arr: Array[(String, Int)] = cidAndSidCount.filter(cid == _._1)
        .sortBy(-_._2._2)
        .take(5)
        .map(_._2)
      buffer += ((cid, arr.toList))
    }
    buffer.foreach(println)

这样做也有缺点:即有多少个key,就有多少个Job,占用资源

方法二 利用TreeSet自动排序特性

 def statCategoryTop10Session_3(sc: SparkContext,
                  categoryCountList: List[CategroyCount],
                  userVisitActionRDD: RDD[UserVisitAction]) = {
    // 1. 过滤出来 top10品类的所有点击记录
    // 1.1 先map出来top10的品类id
    val cids = categoryCountList.map(_.cid.toLong)
    val topCategoryActionRDD: RDD[UserVisitAction] = userVisitActionRDD.filter(action => cids.contains(action.click_category_id))


    // 2. 计算每个品类 下的每个session 的点击量 rdd ((cid, sid) ,1)
    val cidAndSidCount: RDD[(Long, (String, Int))] = topCategoryActionRDD
      .map(action => ((action.click_category_id, action.session_id), 1))
      // 使用自定义分区器 重点理解分区器的原理
      .reduceByKey(new CategoryPartitioner(cids), _ + _)
      .map {
        case ((cid, sid), count) => (cid, (sid, count))
      }
    
    // 3. 排序取top10
//因为已经按key分好了区,所以用Mappartitions ,在每个分区中新建一个TreeSet即可
    val result: RDD[(Long, List[SessionInfo])] = cidAndSidCount.mapPartitions((it: Iterator[(Long, (String, Int))]) => {
//new 一个TreeSet,并同时指定排序规则
   var treeSet: mutable.TreeSet[CategorySession] = new mutable.TreeSet[CategorySession]()(new Ordering[CategorySession] {
          override def compare(x: CategorySession, y: CategorySession): Int = {
            if (x.clickCount >= y.clickCount) -1 else 1
          }
        })
   var id = 0l
  iter.foreach({
    case (l, session) => {
      id = l
      treeSet.add(session)
    if (treeSet.size > 10) treeSet = treeSet.take(10)
          }
        })
        Iterator(id, treeSet)
      })
  
    result.collect.foreach(println)
    
    Thread.sleep(1000000)
  }
}

/*
根据传入的key值来决定分区号,让相同key进入相同的分区,能够避免多次shuffle
 */
class CategoryPartitioner(cids: List[Long]) extends Partitioner {
  // 用cid索引, 作为将来他的分区索引.
  private val cidWithIndex: Map[Long, Int] = cids.zipWithIndex.toMap
  
  // 返回集合的长度
  override def numPartitions: Int = cids.length
  
  // 根据key返回分区的索引
  override def getPartition(key: Any): Int = {
    key match {
      // 根据品类id返回分区的索引!  0-9
      case (cid: Long, _) =>
        cidWithIndex(cid)
    }
  }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 中值滤波,椒盐去噪,图片增强实例

    python 中值滤波,椒盐去噪,图片增强实例

    今天小编就为大家分享一篇python 中值滤波,椒盐去噪,图片增强实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python读取postgresql数据库详情

    Python读取postgresql数据库详情

    这篇文章主要介绍了Python读取postgresql数据库详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-09-09
  • 在Python中定义函数并调用的操作步骤

    在Python中定义函数并调用的操作步骤

    这篇文章主要介绍了在Python中如何定义函数并调用它,函数的定义和调用是Python编程中最基本也是最重要的概念之一,掌握它们对于进行有效的Python编程至关重要,需要的朋友可以参考下
    2024-01-01
  • Python实现PDF页面的删除与添加功能

    Python实现PDF页面的删除与添加功能

    在处理PDF文档的过程中,我们时常会需要对PDF文档中的页面进行编辑操作的情况,如插入和删除页面,通过添加和删除PDF页面,我们可以增加内容或对不需要的内容进行删除,本文将介绍如何使用Python代码实现在PDF文档中添加和删除页面
    2024-04-04
  • python选择排序算法的实现代码

    python选择排序算法的实现代码

    这篇文章主要介绍了python选择排序算法的实现代码,大家参考
    2013-11-11
  • python中如何设置list步长

    python中如何设置list步长

    这篇文章主要介绍了python中如何设置list步长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • Python使用python-docx读写word文档

    Python使用python-docx读写word文档

    这篇文章主要为大家详细介绍了Python使用python-docx读写word文档,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • python 实现学生信息管理系统的示例

    python 实现学生信息管理系统的示例

    本篇文章主要分享python学生管理系统的使用,文章非常详细地介绍了通过示例代码实现的学生管理系统,该系统对每个人的研究或工作都有一定的参考学习价值,希望你能在其中有所收获。
    2020-11-11
  • 详解Django配置优化方法

    详解Django配置优化方法

    这篇文章主要介绍了详解Django配置优化方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • python中的try except与R语言中的tryCatch异常解决

    python中的try except与R语言中的tryCatch异常解决

    这篇文章主要为大家介绍了python中的try except与R语言中的tryCatch异常解决的方式及分析,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2021-11-11

最新评论