浅谈keras保存模型中的save()和save_weights()区别

 更新时间:2020年05月21日 14:05:09   作者:木盏  
这篇文章主要介绍了浅谈keras保存模型中的save()和save_weights()区别,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别。

我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5。同样是h5文件用save()和save_weight()保存效果是不一样的。

我们用宇宙最通用的数据集MNIST来做这个实验,首先设计一个两层全连接网络:

inputs = Input(shape=(784, ))
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
y = Dense(10, activation='softmax')(x)
 
model = Model(inputs=inputs, outputs=y)

然后,导入MNIST数据训练,分别用两种方式保存模型,在这里我还把未训练的模型也保存下来,如下:

from keras.models import Model
from keras.layers import Input, Dense
from keras.datasets import mnist
from keras.utils import np_utils
 
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train=x_train.reshape(x_train.shape[0],-1)/255.0
x_test=x_test.reshape(x_test.shape[0],-1)/255.0
y_train=np_utils.to_categorical(y_train,num_classes=10)
y_test=np_utils.to_categorical(y_test,num_classes=10)
 
inputs = Input(shape=(784, ))
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
y = Dense(10, activation='softmax')(x)
 
model = Model(inputs=inputs, outputs=y)
 
model.save('m1.h5')
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=10)
#loss,accuracy=model.evaluate(x_test,y_test)
 
model.save('m2.h5')
model.save_weights('m3.h5')

如上可见,我一共保存了m1.h5, m2.h5, m3.h5 这三个h5文件。那么,我们来看看这三个玩意儿有什么区别。首先,看看大小:

m2表示save()保存的模型结果,它既保持了模型的图结构,又保存了模型的参数。所以它的size最大的。

m1表示save()保存的训练前的模型结果,它保存了模型的图结构,但应该没有保存模型的初始化参数,所以它的size要比m2小很多。

m3表示save_weights()保存的模型结果,它只保存了模型的参数,但并没有保存模型的图结构。所以它的size也要比m2小很多。

通过可视化工具,我们发现:(打开m1和m2均可以显示出以下结构)

而打开m3的时候,可视化工具报错了。由此可以论证, save_weights()是不含有模型结构信息的。

加载模型

两种不同方法保存的模型文件也需要用不同的加载方法。

from keras.models import load_model
 
model = load_model('m1.h5')
#model = load_model('m2.h5')
#model = load_model('m3.h5')
model.summary()

只有加载m3.h5的时候,这段代码才会报错。其他输出如下:

可见,由save()保存下来的h5文件才可以直接通过load_model()打开!

那么,我们保存下来的参数(m3.h5)该怎么打开呢?

这就稍微复杂一点了,因为m3不含有模型结构信息,所以我们需要把模型结构再描述一遍才可以加载m3,如下:

from keras.models import Model
from keras.layers import Input, Dense
 
inputs = Input(shape=(784, ))
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
y = Dense(10, activation='softmax')(x)
 
model = Model(inputs=inputs, outputs=y)
model.load_weights('m3.h5')

以上把m3换成m1和m2也是没有问题的!可见,save()保存的模型除了占用内存大一点以外,其他的优点太明显了。所以,在不怎么缺硬盘空间的情况下,还是建议大家多用save()来存。

注意!如果要load_weights(),必须保证你描述的有参数计算结构与h5文件中完全一致!什么叫有参数计算结构呢?就是有参数坑,直接填进去就行了。我们把上面的非参数结构换了一下,发现h5文件依然可以加载成功,比如将softmax换成relu,依然不影响加载。

对于keras的save()和save_weights(),完全没问题了吧

以上这篇浅谈keras保存模型中的save()和save_weights()区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 利用Python+eval函数构建数学表达式计算器

    利用Python+eval函数构建数学表达式计算器

    Python 中的函数eval()​是一个非常有用的工具。在本文中,云朵君将和大家一起学习 eval() 如何工作,以及如何在 Python 程序中安全有效地使用它,需要的可以参考一下
    2022-09-09
  • Python munch包 /Munch() 的用法详解

    Python munch包 /Munch() 的用法详解

    这篇文章主要介绍了Python munch包 /Munch() 的用法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-09-09
  • pandas 取出表中一列数据所有的值并转换为array类型的方法

    pandas 取出表中一列数据所有的值并转换为array类型的方法

    下面小编就为大家分享一篇pandas 取出表中一列数据所有的值并转换为array类型的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 浅谈Python2获取中文文件名的编码问题

    浅谈Python2获取中文文件名的编码问题

    下面小编就为大家分享一篇浅谈Python2获取中文文件名的编码问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-01-01
  • pandas 把数据写入txt文件每行固定写入一定数量的值方法

    pandas 把数据写入txt文件每行固定写入一定数量的值方法

    今天小编就为大家分享一篇pandas 把数据写入txt文件每行固定写入一定数量的值方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python 使用SFTP和FTP实现对服务器的文件下载功能

    Python 使用SFTP和FTP实现对服务器的文件下载功能

    这篇文章主要介绍了Python 使用SFTP和FTP实现对服务器的文件下载功能,本文通过实例代码给大家介绍的非常想详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Python OpenCV实现视频追踪

    Python OpenCV实现视频追踪

    这篇文章主要为大家详细介绍了Python OpenCV实现视频追踪,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • Python中的Numpy入门教程

    Python中的Numpy入门教程

    这篇文章主要介绍了Python中的Numpy入门教程,着重讲解了矩阵中的数组操作,需要的朋友可以参考下
    2014-04-04
  • Python如何根据字典中的值排序

    Python如何根据字典中的值排序

    这篇文章主要介绍了Python如何根据字典中的值排序问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • python Matplotlib绘制炫酷柱状图的艺术与技巧大全

    python Matplotlib绘制炫酷柱状图的艺术与技巧大全

    柱状图(Bar Plot)是一种常用的数据可视化方式,用于显示各个类别之间的比较,下面这篇文章主要给大家介绍了关于python Matplotlib绘制炫酷柱状图的艺术与技巧大全,需要的朋友可以参考下
    2024-03-03

最新评论