Keras使用ImageNet上预训练的模型方式

 更新时间:2020年05月23日 15:09:06   作者:breeze5428  
这篇文章主要介绍了Keras使用ImageNet上预训练的模型方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说了,大家还是直接看代码吧!

import keras
import numpy as np
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
 
#Load the VGG model
vgg_model = vgg16.VGG16(weights='imagenet')
 
#Load the Inception_V3 model
inception_model = inception_v3.InceptionV3(weights='imagenet')
 
#Load the ResNet50 model
resnet_model = resnet50.ResNet50(weights='imagenet')
 
#Load the MobileNet model
mobilenet_model = mobilenet.MobileNet(weights='imagenet')

在以上代码中,我们首先import各种模型对应的module,然后load模型,并用ImageNet的参数初始化模型的参数。

如果不想使用ImageNet上预训练到的权重初始话模型,可以将各语句的中'imagenet'替换为'None'。

补充知识:keras上使用alexnet模型来高准确度对mnist数据进行分类

纲要

本文有两个特点:一是直接对本地mnist数据进行读取(假设事先已经下载或从别处拷来)二是基于keras框架(网上多是基于tf)使用alexnet对mnist数据进行分类,并获得较高准确度(约为98%)

本地数据读取和分析

很多代码都是一开始简单调用一行代码来从网站上下载mnist数据,虽然只有10来MB,但是现在下载速度非常慢,而且经常中途出错,要费很大的劲才能拿到数据。

(X_train, y_train), (X_test, y_test) = mnist.load_data()

其实可以单独来获得这些数据(一共4个gz包,如下所示),然后调用别的接口来分析它们。

mnist = input_data.read_data_sets("./MNIST_data", one_hot = True) #导入已经下载好的数据集,"./MNIST_data"为存放mnist数据的目录

x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels

这里面要注意的是,两种接口拿到的数据形式是不一样的。 从网上直接下载下来的数据 其image data值的范围是0~255,且label值为0,1,2,3...9。 而第二种接口获取的数据 image值已经除以255(归一化)变成0~1范围,且label值已经是one-hot形式(one_hot=True时),比如label值2的one-hot code为(0 0 1 0 0 0 0 0 0 0)

所以,以第一种方式获取的数据需要做一些预处理(归一和one-hot)才能输入网络模型进行训练 而第二种接口拿到的数据则可以直接进行训练。

Alexnet模型的微调

按照公开的模型框架,Alexnet只有第1、2个卷积层才跟着BatchNormalization,后面三个CNN都没有(如有说错,请指正)。如果按照这个来搭建网络模型,很容易导致梯度消失,现象就是 accuracy值一直处在很低的值。 如下所示。

在每个卷积层后面都加上BN后,准确度才迭代提高。如下所示

完整代码

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.callbacks import ModelCheckpoint
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #tensorflow已经包含了mnist案例的数据
 
batch_size = 64
num_classes = 10
epochs = 10
img_shape = (28,28,1)
 
# input dimensions
img_rows, img_cols = 28,28
 
# dataset input
#(x_train, y_train), (x_test, y_test) = mnist.load_data()
mnist = input_data.read_data_sets("./MNIST_data", one_hot = True) #导入已经下载好的数据集,"./MNIST_data"为存放mnist数据的目录
print(mnist.train.images.shape, mnist.train.labels.shape)
print(mnist.test.images.shape, mnist.test.labels.shape)
print(mnist.validation.images.shape, mnist.validation.labels.shape)
 
x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels
 
# data initialization
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
 
# Define the input layer
inputs = keras.Input(shape = [img_rows, img_cols, 1])
 
 #Define the converlutional layer 1
conv1 = keras.layers.Conv2D(filters= 64, kernel_size= [11, 11], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(inputs)
# Define the pooling layer 1
pooling1 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv1)
# Define the standardization layer 1
stand1 = keras.layers.BatchNormalization(axis= 1)(pooling1)
 
# Define the converlutional layer 2
conv2 = keras.layers.Conv2D(filters= 192, kernel_size= [5, 5], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand1)
# Defien the pooling layer 2
pooling2 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv2)
# Define the standardization layer 2
stand2 = keras.layers.BatchNormalization(axis= 1)(pooling2)
 
# Define the converlutional layer 3
conv3 = keras.layers.Conv2D(filters= 384, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand2)
stand3 = keras.layers.BatchNormalization(axis=1)(conv3)
 
# Define the converlutional layer 4
conv4 = keras.layers.Conv2D(filters= 384, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand3)
stand4 = keras.layers.BatchNormalization(axis=1)(conv4)
 
# Define the converlutional layer 5
conv5 = keras.layers.Conv2D(filters= 256, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand4)
pooling5 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv5)
stand5 = keras.layers.BatchNormalization(axis=1)(pooling5)
 
# Define the fully connected layer
flatten = keras.layers.Flatten()(stand5)
fc1 = keras.layers.Dense(4096, activation= keras.activations.relu, use_bias= True)(flatten)
drop1 = keras.layers.Dropout(0.5)(fc1)
 
fc2 = keras.layers.Dense(4096, activation= keras.activations.relu, use_bias= True)(drop1)
drop2 = keras.layers.Dropout(0.5)(fc2)
 
fc3 = keras.layers.Dense(10, activation= keras.activations.softmax, use_bias= True)(drop2)
 
# 基于Model方法构建模型
model = keras.Model(inputs= inputs, outputs = fc3)
# 编译模型
model.compile(optimizer= tf.train.AdamOptimizer(0.001),
       loss= keras.losses.categorical_crossentropy,
       metrics= ['accuracy'])
# 训练配置,仅供参考
model.fit(x_train, y_train, batch_size= batch_size, epochs= epochs, validation_data=(x_test,y_test))

以上这篇Keras使用ImageNet上预训练的模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • pytorch自定义二值化网络层方式

    pytorch自定义二值化网络层方式

    今天小编就为大家分享一篇pytorch自定义二值化网络层方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python中eval带来的潜在风险代码分析

    Python中eval带来的潜在风险代码分析

    这篇文章主要介绍了Python中eval带来的潜在风险代码分析,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Flask 数据库迁移详情

    Flask 数据库迁移详情

    本文给大家分享的是 Flask 数据库迁移详情,db.create_all()不会重新创建表或是更新表,需要先使用db.drop_all()删除数据库中所有的表之后再调用db.create_all()才能重新创建表,但是这样的话,原来表中的数据就都被删除了,这肯定是不行的,这时就出现了数据库迁移的概念
    2021-11-11
  • Python中的OpenCV图像腐蚀处理和膨胀处理

    Python中的OpenCV图像腐蚀处理和膨胀处理

    这篇文章主要介绍了Python中的OpenCV图像腐蚀处理和膨胀处理,OpenCV是一个跨平台的计算机视觉库,可用于开发实时的图像处理、计算机视觉以及模式识别程序,需要的朋友可以参考下
    2023-08-08
  • python matplotlib imshow热图坐标替换/映射实例

    python matplotlib imshow热图坐标替换/映射实例

    这篇文章主要介绍了python matplotlib imshow热图坐标替换/映射实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • selenium3+python3环境搭建教程图解

    selenium3+python3环境搭建教程图解

    这篇文章主要介绍了selenium3+python3环境搭建教程图解,需要的朋友可以参考下
    2018-12-12
  • 安装完Python包然后找不到模块的解决步骤

    安装完Python包然后找不到模块的解决步骤

    今天小编就为大家分享一篇安装完Python包然后找不到模块的解决步骤,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python PyQt5实现拖放效果的原理详解

    Python PyQt5实现拖放效果的原理详解

    这篇文章主要为大家详细介绍了Python PyQt5中拖放效果的实现原理与实现代码,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2022-11-11
  • 构建高效的python requests长连接池详解

    构建高效的python requests长连接池详解

    这篇文章主要介绍了构建高效的python requests长连接池详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python如何读写csv数据

    python如何读写csv数据

    这篇文章主要为大家详细介绍了python如何读写csv数据,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03

最新评论