opencv 实现特定颜色线条提取与定位操作

 更新时间:2020年06月02日 14:21:19   作者:chenghaoy  
这篇文章主要介绍了opencv 实现特定颜色线条提取与定位操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

本篇文章通过调用opencv里的函数简单的实现了对图像里特定颜色提取与定位,以此为基础,我们可以实现对特定颜色物体的前景分割与定位,或者特定颜色线条的提取与定位

主要步骤:

将RGB图像转化为HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255),不同的颜色有着不同的取值范围,一般给出如下:

设定待提取颜色的HSV范围值,然后调用inRange函数实现对颜色空间的提取,该函数会将除目标颜色外的其余颜色为黑色背景,仅保留该颜色为前景

cv2.inRange(hsv, lower_red, upper_red)

参数解析:

第一个参数:hsv指的是原图

第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0

第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0

而在lower_red~upper_red之间的值变成255

二值化

腐蚀与膨胀操作,去除噪点,连接断点

调用findContours函数进行轮廓检测

cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图)

cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])

参数解析

第一个参数是寻找轮廓的图像;

第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):

cv2.RETR_EXTERNAL表示只检测外轮廓

cv2.RETR_LIST检测的轮廓不建立等级关系

cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。

cv2.RETR_TREE建立一个等级树结构的轮廓。

第三个参数method为轮廓的近似办法

cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1

cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息

cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

返回值

cv2.findContours()函数返回三个值,一个是图像,一个是轮廓本身,还有一个是每条轮廓对应的属性。

对于轮廓是以坐标的形式返回,可以通过函数cv2.drawContours()绘制出轮廓

绘制矩形区域对轮廓进行定位

主要代码如下:

import numpy as np
import cv2
import os
image = 'image1.jpg'
savefile = './mark1'
# image = os.listdir(image_file)
save_image = os.path.join(savefile, image)

#设定颜色HSV范围,假定为红色
redLower = np.array([156, 43, 46])
redUpper = np.array([179, 255, 255])

#读取图像
img = cv2.imread(image)

#将图像转化为HSV格式
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

#去除颜色范围外的其余颜色
mask = cv2.inRange(hsv, redLower, redUpper)

# 二值化操作
ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)

#膨胀操作,因为是对线条进行提取定位,所以腐蚀可能会造成更大间隔的断点,将线条切断,因此仅做膨胀操作
kernel = np.ones((5, 5), np.uint8)
dilation = cv2.dilate(binary, kernel, iterations=1)

#获取图像轮廓坐标,其中contours为坐标值,此处只检测外形轮廓
_, contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

if len(contours) > 0:
  #cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高
  boxes = [cv2.boundingRect(c) for c in contours]
  for box in boxes:
    x, y, w, h = box
    #绘制矩形框对轮廓进行定位
    cv2.rectangle(img, (x, y), (x+w, y+h), (153, 153, 0), 2)
	#将绘制的图像保存并展示
	cv2.imwrite(save_image, img)
	cv2.imshow('image', img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()

效果如图,一试卷红色批改字样为例:

原图:

对批改区域定位图:

以上这篇opencv 实现特定颜色线条提取与定位操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • opencv实现图像校正

    opencv实现图像校正

    这篇文章主要为大家详细介绍了opencv实现图像校正,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • 教你用Python爬取英雄联盟皮肤原画

    教你用Python爬取英雄联盟皮肤原画

    今天给大家带来的是关于Python的相关知识,文章围绕着用Python爬取英雄联盟皮肤原画展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • python内置函数globals()的实现代码

    python内置函数globals()的实现代码

    本文主要介绍了python内置函数globals()的实现代码,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-09-09
  • python Matplotlib底图中鼠标滑过显示隐藏内容的实例代码

    python Matplotlib底图中鼠标滑过显示隐藏内容的实例代码

    这篇文章主要介绍了python Matplotlib底图中鼠标滑过显示隐藏内容,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-07-07
  • Python字典fromkeys()方法使用代码实例

    Python字典fromkeys()方法使用代码实例

    这篇文章主要介绍了Python字典fromkeys()方法使用代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • python矩阵列的实现示例

    python矩阵列的实现示例

    在Python和NumPy库的帮助下,矩阵列可以很容易地进行各种操作,本文主要介绍了python矩阵列的实现示例,具有一定的参考价值,感兴趣的可以了解一下
    2024-02-02
  • Python 列表 sort()函数使用实例详解

    Python 列表 sort()函数使用实例详解

    这篇文章主要介绍了Python 列表 sort()函数使用详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-07-07
  • Python中创建游戏的第一步之安装Pygame库教程

    Python中创建游戏的第一步之安装Pygame库教程

    Pygame是跨平台Python模块,专为电子游戏设计,包含图像、声音,下面这篇文章主要给大家介绍了关于Python中创建游戏的第一步之安装Pygame库的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-06-06
  • python对配置文件.ini进行增删改查操作的方法示例

    python对配置文件.ini进行增删改查操作的方法示例

    .ini配置文件常被用作存储程序中的一些参数,通过它程序可以变得更加灵活。下面这篇文章主要给大家介绍了关于python对配置文件.ini进行增删改查操作的方法示例,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-07-07
  • Python全栈之单项循环

    Python全栈之单项循环

    这篇文章主要为大家介绍了Python单项循环,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-11-11

最新评论