python 实现图像快速替换某种颜色

 更新时间:2020年06月04日 11:25:25   作者:grayondream  
这篇文章主要介绍了python 实现图像快速替换某种颜色,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

最近的对图像数据进行处理的时候需要将图像中的某个颜色替换为另一个颜色,但是网络上找到的方法都是通过对图像的遍历进行替换,实在是太费时了!刚开始使用时觉得CPU很快了,一张图片应该用不了多久,但是实际使用中耗时确实难以接受的!于是自己写了一个替换程序加快速度,比遍历快很多,但我觉得不是最快的,应该有通过矩阵索引更快的处理方式,只是我自己暂时并不知道该如何实现,如果以后能够实现会进行更新,暂时先写下自己暂时觉得可用的代码。

一、通过遍历替换

将图像中某个颜色替换为另一个颜色一般的做法是遍历整个图像,逐一替换,如下:

def replace_color_tran(img, src_clr, dst_clr):
	''' 通过遍历颜色替换程序
	@param	img:	图像矩阵
	@param	src_clr:	需要替换的颜色(r,g,b)
	@param	dst_clr:	目标颜色		(r,g,b)
	@return				替换后的图像矩阵
	'''
	img_arr = np.asarray(img, dtype=np.double)
	
	dst_arr = img_arr.copy()
	for i in range(img_arr.shape[1]):	
		for j in range(img_arr.shape[0]):
			if (img_arr[j][i] == src_clr)[0] == True:
				dst_arr[j][i] = dst_clr
		
	return np.asarray(dst_arr, dtype=np.uint8)

二、通过矩阵操作加快替换

但是这样做,处理速度是很慢的即便是现在CPU很快的情况下。我自己通过numpy矩阵操作将速度提升了一点,具体做法如下:

将图像的三个通道拆分开来为R,G,B三个通道

将三个通道的数据值进行简单的编码,合并为单通道矩阵;

将需要替换的颜色进行同2的编码,利用改编码在2中得到的矩阵中得到对应颜色的索引;

利用3中得到的索引将R,G,B三个通道中的对应颜色值替换为目标值;

将得到的三个通道合并为一个图像数据。

具体实现如下:

def replace_color(img, src_clr, dst_clr):
	''' 通过矩阵操作颜色替换程序
	@param	img:	图像矩阵
	@param	src_clr:	需要替换的颜色(r,g,b)
	@param	dst_clr:	目标颜色		(r,g,b)
	@return				替换后的图像矩阵
	'''
  img_arr = np.asarray(img, dtype=np.double)
  
  r_img = img_arr[:,:,0].copy()
  g_img = img_arr[:,:,1].copy()
  b_img = img_arr[:,:,2].copy()

  img = r_img * 256 * 256 + g_img * 256 + b_img
  src_color = src_clr[0] * 256 * 256 + src_clr[1] * 256 + src_clr[2] #编码
  
  r_img[img == src_color] = dst_clr[0]
  g_img[img == src_color] = dst_clr[1]
  b_img[img == src_color] = dst_clr[2]
  
  dst_img = np.array([r_img, g_img, b_img], dtype=np.uint8)
  dst_img = dst_img.transpose(1,2,0)
  
  return dst_img

三、结果对比

先看下具体的实现结果,全部测试程序文末给出,(上面的图片是原图,下面是替换后的图片)。

四、程序解释

通过如下方式编码的原因是r,g,b三原色的数值本身是顺序相关的,为了保证最后索引的一致与准确性,采用将不同数值错位开。这里的magic number采用256是因为三原色的数值的范围是[0,255],这样相乘可以保证数据在二进制上的完全相互交错而保证该编码是绝对正确的,当然也可以采用其他形式的编码或者数值选择其他数值,我这样选择是为了保险起见而已。

img = r_img * 256 * 256 + g_img * 256 + b_img src_color = src_clr[0] * 256 * 256 + src_clr[1] * 256 + src_clr[2] #编码

五、完整的测试程序

完整的程序:

from PIL import Image
import os
import numpy as np
import time

def replace_color(img, src_clr, dst_clr):
	''' 通过矩阵操作颜色替换程序
	@param	img:	图像矩阵
	@param	src_clr:	需要替换的颜色(r,g,b)
	@param	dst_clr:	目标颜色		(r,g,b)
	@return				替换后的图像矩阵
	'''
  img_arr = np.asarray(img, dtype=np.double)
  
  #分离通道
  r_img = img_arr[:,:,0].copy()
  g_img = img_arr[:,:,1].copy()
  b_img = img_arr[:,:,2].copy()

	#编码
  img = r_img * 256 * 256 + g_img * 256 + b_img
  src_color = src_clr[0] * 256 * 256 + src_clr[1] * 256 + src_clr[2]
  
  #索引并替换颜色
  r_img[img == src_color] = dst_clr[0]
  g_img[img == src_color] = dst_clr[1]
  b_img[img == src_color] = dst_clr[2]
  
  #合并通道
  dst_img = np.array([r_img, g_img, b_img], dtype=np.uint8)
  #将数据转换为图像数据(h,w,c)
  dst_img = dst_img.transpose(1,2,0)
  
  return dst_img

def replace_color_tran(img, src_clr, dst_clr):
	''' 通过遍历颜色替换程序
	@param	img:	图像矩阵
	@param	src_clr:	需要替换的颜色(r,g,b)
	@param	dst_clr:	目标颜色		(r,g,b)
	@return				替换后的图像矩阵
	'''
	img_arr = np.asarray(img, dtype=np.double)
	
	dst_arr = img_arr.copy()
	for i in range(img_arr.shape[1]):	
		for j in range(img_arr.shape[0]):
			if (img_arr[j][i] == src_clr)[0] == True:
				dst_arr[j][i] = dst_clr
		
	return np.asarray(dst_arr, dtype=np.uint8)

img = '1.jpg'
img = Image.open(img).convert('RGB')
res_img = img.copy()
count = 20
matrix_time = 0
trans_time = 0

for i in range(count):
	print(i)
	start = time.time()
	dst_img = replace_color(img, (8,10,51), (255,0,0))
	end = time.time()
	matrix_time += (end - start)
	
	start = time.time()
	dst_img = replace_color_tran(img, (8,10,51), (255,0,0))
	end = time.time()
	trans_time += (end - start)
	
	res_img = dst_img
	
res_img = Image.fromarray(res_img)
res_img.save('2.jpg')

print('矩阵操作花费时间:', matrix_time / count )
print('遍历操作花费时间:', trans_time / count )

以上这篇python 实现图像快速替换某种颜色就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • matplotlib绘制直方图的基本配置(万能模板案例)

    matplotlib绘制直方图的基本配置(万能模板案例)

    本文主要介绍了matplotlib绘制直方图的基本配置(万能模板案例),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-04-04
  • PyCharm安装库numpy失败问题的详细解决方法

    PyCharm安装库numpy失败问题的详细解决方法

    今天使用pycharm编译python程序时,由于要调用numpy包,但又未曾安装numpy,于是就根据pycharm的提示进行安装,最后竟然提示出错,下面这篇文章主要给大家介绍了关于PyCharm安装库numpy失败问题的详细解决方法,需要的朋友可以参考下
    2022-06-06
  • python字符串替换re.sub()方法解析

    python字符串替换re.sub()方法解析

    这篇文章主要介绍了python字符串替换re.sub()方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • python自定义封装带颜色的logging模块

    python自定义封装带颜色的logging模块

    大家好,本篇文章主要讲的是python自定义封装带颜色的logging模块,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-02-02
  • Python利用全连接神经网络求解MNIST问题详解

    Python利用全连接神经网络求解MNIST问题详解

    这篇文章主要介绍了Python利用全连接神经网络求解MNIST问题,结合实例形式详细分析了单隐藏层神经网络与多层神经网络,以及Python全连接神经网络求解MNIST问题相关操作技巧,需要的朋友可以参考下
    2020-01-01
  • Python内建函数Built_in Funtions用法示例详解

    Python内建函数Built_in Funtions用法示例详解

    这篇文章主要为大家介绍了Python内建函数Built_in Funtions用法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Python中的__new__与__init__魔术方法理解笔记

    Python中的__new__与__init__魔术方法理解笔记

    这篇文章主要介绍了Python中的__new__与__init__魔术方法理解笔记,需要的朋友可以参考下
    2014-11-11
  • pd.drop_duplicates删除重复行的方法实现

    pd.drop_duplicates删除重复行的方法实现

    drop_duplicates 方法实现对数据框 DataFrame 去除特定列的重复行,本文主要介绍了pd.drop_duplicates删除重复行的方法实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • Python实现自动化邮件发送过程详解

    Python实现自动化邮件发送过程详解

    这篇文章主要介绍了如何利用Python实现自动化邮件发送,可以让你摆脱繁琐的重复性业务,可以节省非常多的时间。感兴趣的小伙伴可以试一试
    2022-01-01
  • Python使用pymysql模块操作mysql增删改查实例分析

    Python使用pymysql模块操作mysql增删改查实例分析

    这篇文章主要介绍了Python使用pymsql模块操作mysql增删改查,结合实例形式分析了Python使用pymsql模块针对mysql进行增删改查操作的相关实现方法与操作注意事项,需要的朋友可以参考下
    2019-12-12

最新评论