在python中使用pyspark读写Hive数据操作

 更新时间:2020年06月06日 14:11:40   作者:_____miss  
这篇文章主要介绍了在python中使用pyspark读写Hive数据操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

1、读Hive表数据

pyspark读取hive数据非常简单,因为它有专门的接口来读取,完全不需要像hbase那样,需要做很多配置,pyspark提供的操作hive的接口,使得程序可以直接使用SQL语句从hive里面查询需要的数据,代码如下:

from pyspark.sql import HiveContext,SparkSession
 
_SPARK_HOST = "spark://spark-master:7077"
_APP_NAME = "test"
spark_session = SparkSession.builder.master(_SPARK_HOST).appName(_APP_NAME).getOrCreate()
 
hive_context= HiveContext(spark_session )
 
# 生成查询的SQL语句,这个跟hive的查询语句一样,所以也可以加where等条件语句
hive_database = "database1"
hive_table = "test"
hive_read = "select * from {}.{}".format(hive_database, hive_table)
 
# 通过SQL语句在hive中查询的数据直接是dataframe的形式
read_df = hive_context.sql(hive_read)

2 、将数据写入hive表

pyspark写hive表有两种方式:

(1)通过SQL语句生成表

from pyspark.sql import SparkSession, HiveContext
 
_SPARK_HOST = "spark://spark-master:7077"
_APP_NAME = "test"
 
spark = SparkSession.builder.master(_SPARK_HOST).appName(_APP_NAME).getOrCreate()
 
data = [
 (1,"3","145"),
 (1,"4","146"),
 (1,"5","25"),
 (1,"6","26"),
 (2,"32","32"),
 (2,"8","134"),
 (2,"8","134"),
 (2,"9","137")
]
df = spark.createDataFrame(data, ['id', "test_id", 'camera_id'])
 
# method one,default是默认数据库的名字,write_test 是要写到default中数据表的名字
df.registerTempTable('test_hive')
sqlContext.sql("create table default.write_test select * from test_hive")

(2)saveastable的方式

# method two
 
# "overwrite"是重写表的模式,如果表存在,就覆盖掉原始数据,如果不存在就重新生成一张表
# mode("append")是在原有表的基础上进行添加数据
df.write.format("hive").mode("overwrite").saveAsTable('default.write_test')
 

tips:

spark用上面几种方式读写hive时,需要在提交任务时加上相应的配置,不然会报错:

spark-submit --conf spark.sql.catalogImplementation=hive test.py

补充知识:PySpark基于SHC框架读取HBase数据并转成DataFrame

一、首先需要将HBase目录lib下的jar包以及SHC的jar包复制到所有节点的Spark目录lib下

二、修改spark-defaults.conf 在spark.driver.extraClassPath和spark.executor.extraClassPath把上述jar包所在路径加进去

三、重启集群

四、代码

#/usr/bin/python
#-*- coding:utf-8 –*-
 
from pyspark import SparkContext
from pyspark.sql import SQLContext,HiveContext,SparkSession
from pyspark.sql.types import Row,StringType,StructField,StringType,IntegerType
from pyspark.sql.dataframe import DataFrame
 
sc = SparkContext(appName="pyspark_hbase")
sql_sc = SQLContext(sc)
 
dep = "org.apache.spark.sql.execution.datasources.hbase"
#定义schema
catalog = """{
       "table":{"namespace":"default", "name":"teacher"},
       "rowkey":"key",
       "columns":{
            "id":{"cf":"rowkey", "col":"key", "type":"string"},
            "name":{"cf":"teacherInfo", "col":"name", "type":"string"},
            "age":{"cf":"teacherInfo", "col":"age", "type":"string"},
            "gender":{"cf":"teacherInfo", "col":"gender","type":"string"},
            "cat":{"cf":"teacherInfo", "col":"cat","type":"string"},
            "tag":{"cf":"teacherInfo", "col":"tag", "type":"string"},
            "level":{"cf":"teacherInfo", "col":"level","type":"string"} }
      }"""
 
df = sql_sc.read.options(catalog = catalog).format(dep).load()
 
print ('***************************************************************')
print ('***************************************************************')
print ('***************************************************************')
df.show()
print ('***************************************************************')
print ('***************************************************************')
print ('***************************************************************')
sc.stop()

五、解释

数据来源参考请本人之前的文章,在此不做赘述

schema定义参考如图:

六、结果

以上这篇在python中使用pyspark读写Hive数据操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • django利用request id便于定位及给日志加上request_id

    django利用request id便于定位及给日志加上request_id

    这篇文章主要介绍了django利用request id便于定位及给日志加上request_id的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用django具有一定的参考学习价值,需要的朋友们下面来一起看看吧
    2018-08-08
  • Python实现定制自动化业务流量报表周报功能【XlsxWriter模块】

    Python实现定制自动化业务流量报表周报功能【XlsxWriter模块】

    这篇文章主要介绍了Python实现定制自动化业务流量报表周报功能,结合实例形式分析了Python基于XlsxWriter模块操作xlsx文件生成报表图的相关操作技巧,需要的朋友可以参考下
    2019-03-03
  • Python如何爬取b站热门视频并导入Excel

    Python如何爬取b站热门视频并导入Excel

    这篇文章主要介绍了Python如何爬取b站热门视频并导入Excel,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • Python中yield关键字及与return的区别详解

    Python中yield关键字及与return的区别详解

    这篇文章主要介绍了Python中yield关键字及与return的区别详解,带有 yield 的函数在 Python 中被称之为 generator生成器,比如列表所有数据都在内存中,如果有海量数据的话将会非常耗内存,想要得到庞大的数据,又想让它占用空间少,那就用生成器,需要的朋友可以参考下
    2023-08-08
  • python数据分析必会的Pandas技巧汇总

    python数据分析必会的Pandas技巧汇总

    用Python做数据分析光是掌握numpy和matplotlib可不够,numpy虽然能够帮我们处理处理数值型数据,但很多时候,还有字符串,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据,一些Pandas必会的用法,让你的数据分析水平更上一层楼
    2021-08-08
  • Pycharm配置PyQt5环境的教程

    Pycharm配置PyQt5环境的教程

    这篇文章主要介绍了Pycharm配置PyQt5环境的教程,本文通过图文实例详解给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • 如何更优雅地写python代码

    如何更优雅地写python代码

    这篇文章主要介绍了如何更优雅地写python代码,我们写代码,往往还是按照其它语言的思维习惯来写,那样的写法不仅运行速度慢,代码读起来也费尽,给人一种拖泥带水的感觉,需要的朋友可以参考下
    2019-07-07
  • Python类与实例的使用详解

    Python类与实例的使用详解

    面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同
    2022-08-08
  • Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法

    Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法

    这篇文章主要给大家介绍了关于Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-05-05
  • Python入门教程(十五)Python的字典

    Python入门教程(十五)Python的字典

    这篇文章主要介绍了Python入门教程(十五)Python的字典,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04

最新评论