在python下实现word2vec词向量训练与加载实例

 更新时间:2020年06月09日 11:13:08   作者:csg_mozl123  
这篇文章主要介绍了在python下实现word2vec词向量训练与加载实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

项目中要对短文本进行相似度估计,word2vec是一个很火的工具。本文就word2vec的训练以及加载进行了总结。

word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档的语料库训练得到的词向量模型。

通过该模型可以对单词的相似度进行量化分析。

word2vec的训练方法有2种,一种是通过word2vec的官方手段,在linux环境下编译并执行。

在github上下载word2vec的安装包,然后make编译。查看demo-word.sh脚本,得到word2vec的执行命令:

./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15

参数解释:

1)-train:需要训练的语料库,text8为语料库文件名

2)-output:输出的词向量文件,vectors.bin为输出词向量文件名,.bin后缀为二进制文件。若要以文档的形式查看词向量文件,需要将-binary参数的值由1改为0

3)-cbow:是否使用cbow模型进行训练。参数为1表示使用cbow,为0表示不使用cbow

4)-size:词向量的维数,默认为200维。

5)-window:训练过程中截取上下文的窗口大小,默认为8,即考虑一个词前8个和后8个词

6)-negative:若参数非0,表明采样随机负采样的方法,负样本子集的规模默认为25。若参数值为0,表示不使用随机负采样模型。使用随机负采样比Hierarchical Softmax模型效率更高。

7)-hs:是否采用基于Hierarchical Softmax的模型。参数为1表示使用,0表示不使用

8)-sample:语料库中的词频阈值参数,词频大于该阈值的词,越容易被采样。默认为e^-4.

9)-threads:开启的线程数目,默认为20.

10)-binary:词向量文件的输出形式。1表示输出二进制文件,0表示输出文本文件

11)-iter:训练的迭代次数。一定范围内,次数越高,训练得到的参数会更准确。默认值为15次.

./word2vec -train mytext.txt -output vectors.txt -cbow 1 -size 200 -window 5 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 0 -iter 30

示例为训练一个名mytext.txt的文档。设置输出词向量的格式为.txt文本文档,所以还需要将-binary参数设置为0.

训练模型采用基于随机负采样的cbow模型。由于短文本字数极为有限,所以-window参数设置为5,设置词向量的维数

为200,为了使得到的参数更准确,将迭代次数增加至30.其他参数使用默认值。

训练以后得到一个txt文本,该文本的内容为:每行一个单词,单词后面是对应的词向量。

gensim加载词向量:

保存词向量模型到pkl中(注意:这里是对词向量模型进行构建)

from gensim.models import KeyedVectors
if not os.path.exists(pkl_path): # 如果pickle模型不存在,则构建一个

    print '词向量模型不存在,开始构建词向量模型...'
    Word2Vec = KeyedVectors.load_word2vec_format(vecs_path, binary=False) # 加载词向量模型
    f = file(pkl_path, 'wb')
    pickle.dump(Word2Vec, f, True)
    f.close()
    print '词向量模型构建完毕...'

f= file(pkl_path, 'rb')# 打开pkl文件
word2vec=pickle.load(f)# 载入pkl

第二种方法是使用gensim模块训练词向量:

from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence

try:
  import cPickle as pickle
except ImportError:
  import pickle

sentences = LineSentence(path)# path为要训练的txt的路径
# 对sentences表示的语料库进行训练,训练200维的词向量,窗口大小设置为5,最小词频设置为5
model = Word2Vec(sentences, size=200, window=5, min_count=5)
model.save(model_path)#model_path为模型路径。保存模型,通常采用pkl形式保存,以便下次直接加载即可

# 加载模型
model = Word2Vec.load(model_path)

完整的训练,加载通常采用如下方式:

if not os.path.exists(model_path):
    sentences = LineSentence(path)
    model = Word2Vec(sentences, size=200, window=5, min_count=5)
    model.save(model_path)
model = Word2Vec.load(model_path)

这样一来,就可以通过pkl化的词向量模型进行读取了。pkl的目的是为了保存程序中变量的状态,以便下次直接访问,

不必重新训练模型。

详细内容间gensim官方库

https://radimrehurek.com/gensim/models/word2vec.html

以上这篇在python下实现word2vec词向量训练与加载实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python创建一个最简单http webserver服务器的方法

    python创建一个最简单http webserver服务器的方法

    这篇文章主要介绍了python创建一个最简单http webserver服务器的方法,实例分析了Python操作http创建服务器端的相关技巧,需要的朋友可以参考下
    2015-05-05
  • 使用apiDoc实现python接口文档编写

    使用apiDoc实现python接口文档编写

    今天小编就为大家分享一篇使用apiDoc实现python接口文档编写,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Python中enumerate函数代码解析

    Python中enumerate函数代码解析

    这篇文章主要介绍了Python中enumerate函数代码解析,涉及函数说明以及相关示例,具有一定参考价值,需要的朋友可以了解下。
    2017-10-10
  • Python Ast抽象语法树的介绍及应用详解

    Python Ast抽象语法树的介绍及应用详解

    这篇文章主要为大家介绍了Python Ast抽象语法树的介绍及应用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-07-07
  • python os.rename实例用法详解

    python os.rename实例用法详解

    在本篇文章里小编给大家整理的是一篇关于python os.rename实例用法详解内容,有需要的朋友们可以学习下。
    2020-12-12
  • Python入门教程(九)Python字符串介绍

    Python入门教程(九)Python字符串介绍

    这篇文章主要介绍了Python入门教程(九)Python字符串,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04
  • python爬虫搭配起Bilibili唧唧的流程分析

    python爬虫搭配起Bilibili唧唧的流程分析

    这篇文章主要介绍了python爬虫搭配起Bilibili唧唧的流程分析,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • pygame.display.flip()和pygame.display.update()的区别及说明

    pygame.display.flip()和pygame.display.update()的区别及说明

    这篇文章主要介绍了pygame.display.flip()和pygame.display.update()的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-03-03
  • nlp自然语言处理学习CBOW模型类实现示例解析

    nlp自然语言处理学习CBOW模型类实现示例解析

    这篇文章主要为大家介绍了nlp自然语言处理学习CBOW模型类实现示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • python dlib人脸识别代码实例

    python dlib人脸识别代码实例

    这篇文章主要介绍了python dlib人脸识别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04

最新评论