解决keras加入lambda层时shape的问题
使用keras时,加入keras的lambda层以实现自己定义的操作。但是,发现操作结果的shape信息有问题。
我的后端是theano,使用了sum操作。
比如输入时,shape为(32,28,28),其中32为batch大小。
此时对应的ndim应该等于3。
但是,lambda处理后结果显示_keras_shape为(32,28,28),而ndim却是2。
这导致后边各项操作都会出现问题。
此处sum函数加入参数keepdims=True即可。
此注意keras中的各种层几乎都不用去理会batch的大小,系统会自动在shape中加入None占位,所以很多参数也不用加入batch的大小。但是进行sum等操作时,选择按照哪个axis进行操作,要考虑batch的存在。
补充知识:keras Merge or merge
在使用keras merge层时,发现有Merge 、merge两种:
from keras.layers import Merge
from keras.layers import merge
使用第一种是报错
“TensorVariable object has no attribute 'get_output_shape_at' ”
使用第二种小写即可。
以上这篇解决keras加入lambda层时shape的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python threading Local()函数用法案例详解
这篇文章主要介绍了Python threading Local()函数用法案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下2021-09-09python操作excel的方法(xlsxwriter包的使用)
这篇文章主要为大家详细介绍了python操作excel的方法,xlsxwriter包的使用方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2018-06-06caffe binaryproto 与 npy相互转换的实例讲解
今天小编就为大家分享一篇caffe binaryproto 与 npy相互转换的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-07-07
最新评论