Keras 利用sklearn的ROC-AUC建立评价函数详解

 更新时间:2020年06月15日 12:03:04   作者:青盏  
这篇文章主要介绍了Keras 利用sklearn的ROC-AUC建立评价函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说了,大家还是直接看代码吧!

# 利用sklearn自建评价函数
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from keras.callbacks import Callback

class RocAucEvaluation(Callback):
 def __init__(self, validation_data=(), interval=1):
 super(Callback, self).__init__()
 self.interval = interval
 self.x_val,self.y_val = validation_data
 def on_epoch_end(self, epoch, log={}):
 if epoch % self.interval == 0:
  y_pred = self.model.predict(self.x_val, verbose=0)
  score = roc_auc_score(self.y_val, y_pred)
  print('\n ROC_AUC - epoch:%d - score:%.6f \n' % (epoch+1, score))

x_train,y_train,x_label,y_label = train_test_split(train_feature, train_label, train_size=0.95, random_state=233)
RocAuc = RocAucEvaluation(validation_data=(y_train,y_label), interval=1)

hist = model.fit(x_train, x_label, batch_size=batch_size, epochs=epochs, validation_data=(y_train, y_label), callbacks=[RocAuc], verbose=2)

补充知识:keras用auc做metrics以及早停

我就废话不多说了,大家还是直接看代码吧!

import tensorflow as tf
from sklearn.metrics import roc_auc_score

def auroc(y_true, y_pred):
 return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# Build Model...
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])

完整例子:

def auc(y_true, y_pred):
 auc = tf.metrics.auc(y_true, y_pred)[1]
 K.get_session().run(tf.local_variables_initializer())
 return auc

def create_model_nn(in_dim,layer_size=200):
 model = Sequential()
 model.add(Dense(layer_size,input_dim=in_dim, kernel_initializer='normal'))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.3))
 for i in range(2):
 model.add(Dense(layer_size))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.3))
 model.add(Dense(1, activation='sigmoid'))
 adam = optimizers.Adam(lr=0.01)
 model.compile(optimizer=adam,loss='binary_crossentropy',metrics = [auc]) 
 return model
####cv train
folds = StratifiedKFold(n_splits=5, shuffle=False, random_state=15)
oof = np.zeros(len(df_train))
predictions = np.zeros(len(df_test))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_train.values, target2.values)):
 print("fold n°{}".format(fold_))
 X_train = df_train.iloc[trn_idx][features]
 y_train = target2.iloc[trn_idx]
 X_valid = df_train.iloc[val_idx][features]
 y_valid = target2.iloc[val_idx]
 model_nn = create_model_nn(X_train.shape[1])
 callback = EarlyStopping(monitor="val_auc", patience=50, verbose=0, mode='max')
 history = model_nn.fit(X_train, y_train, validation_data = (X_valid ,y_valid),epochs=1000,batch_size=64,verbose=0,callbacks=[callback])
 print('\n Validation Max score : {}'.format(np.max(history.history['val_auc'])))
 predictions += model_nn.predict(df_test[features]).ravel()/folds.n_splits

以上这篇Keras 利用sklearn的ROC-AUC建立评价函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python解析nginx日志文件

    Python解析nginx日志文件

    Web服务器的各种系统管理工作包括了多Nginx/Apache 日志的统计,python使这个任务变得极其简单,下面我们来详细讲解下具体的做法,有需要的小伙伴可以参考下。
    2015-05-05
  • python在非root权限下的安装方法

    python在非root权限下的安装方法

    下面小编就为大家分享一篇python在非root权限下的安装方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-01-01
  • 详解Python的三种可变参数

    详解Python的三种可变参数

    这篇文章主要介绍了Python的三种可变参数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • Python学习之sys模块使用教程详解

    Python学习之sys模块使用教程详解

    sys模块 与 os包一样,也是对系统资源进行调用。功能同样也是非常丰富。本文将对sys模块的一些简单且常用的函数进行介绍,感兴趣的可以学习一下
    2022-03-03
  • Python实现甘特图绘制的示例详解

    Python实现甘特图绘制的示例详解

    相信在平常实际工作当中,需要对整体的项目做一个梳理,这时如果有一个网页应用能够对整体项目有一个可视化页面的展示,是不是会对你的实际工作有所帮助呢?今天小编就通过Python+Streamlit框架来绘制甘特图并制作可视化大屏,需要的可以参考一下
    2023-04-04
  • Python selenium 实例之通过 selenium 查询禅道是否有任务或者BUG

    Python selenium 实例之通过 selenium 查询禅道是否有任务或者BUG

    这篇文章主要介绍了Python selenium 实例之通过 selenium 查询禅道是否有任务或者BUG的相关资料,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • pytorch创建tensor函数详情

    pytorch创建tensor函数详情

    这篇文章主要介绍了pytorch创建tensor函数详情,文章围绕tensor函数的相关自来哦展开详细内容的介绍,需要的小伙伴可以参考一下,希望对你有所帮助
    2022-03-03
  • 2021年的Python 时间轴和即将推出的功能详解

    2021年的Python 时间轴和即将推出的功能详解

    这篇文章主要介绍了2021年的Python 时间轴和即将推出的功能,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • Python调用edge-tts实现在线文字转语音效果

    Python调用edge-tts实现在线文字转语音效果

    edge-tts是一个 Python 模块,允许通过Python代码或命令的方式使用 Microsoft Edge 的在线文本转语音服务,这篇文章主要介绍了Python调用edge-tts实现在线文字转语音效果,需要的朋友可以参考下
    2024-03-03
  • Python实现变量数值交换及判断数组是否含有某个元素的方法

    Python实现变量数值交换及判断数组是否含有某个元素的方法

    这篇文章主要介绍了Python实现变量数值交换及判断数组是否含有某个元素的方法,涉及Python字符串与数组的相关赋值、判断操作技巧,需要的朋友可以参考下
    2017-09-09

最新评论