使用keras内置的模型进行图片预测实例

 更新时间:2020年06月17日 09:58:53   作者:lucky404  
这篇文章主要介绍了使用keras内置的模型进行图片预测实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

keras 模块里面为我们提供了一个预训练好的模型,也就是开箱即可使用的图像识别模型

趁着国庆假期有时间我们就来看看这个预训练模型如何使用吧

可用的模型有哪些?

根据官方文档目前可用的模型大概有如下几个

1、VGG16

2、VGG19

3、ResNet50

4、InceptionResNetV2

5、InceptionV3

它们都被集成到了keras.applications 中

模型文件从哪来

当我们使用了这几个模型时,keras就会去自动下载这些已经训练好的模型保存到我们本机上面

模型文件会被下载到 ~/.keras/models/并在载入模型时自动载入

各个模型的信息:

如何使用预训练模型

使用大致分为三个步骤

1、导入所需模块

2、找一张你想预测的图像将图像转为矩阵

3、将图像矩阵放到模型中进行预测

关于图像矩阵的大小

VGG16,VGG19,ResNet50 默认输入尺寸是224x224

InceptionV3, InceptionResNetV2 模型的默认输入尺寸是299x299

代码demo

假设我现在有一张图片

我需要使用预训练模型来识别它

那我们就按照上面的步骤

第一步导入模块

from keras.applications import VGG16
from keras.applications import VGG19
from keras.applications import ResNet50
from keras.applications import InceptionV3
from keras.applications import InceptionResNetV2

第二步将图像转为矩阵

这里我们需要使用 keras.preprocessing.image 里面 img_to_array 来帮我们转

 image = cv2.imread(img)
 image = cv2.resize(image, self.dim)
 image = img_to_array(image)
 image = np.expand_dims(image, axis=0)

第三步 将图像矩阵丢到模型中进行预测

predict = model.predict(preprocess)
decode_predict = decode_predictions(predict)

完整代码如下

1、配置文件

2、获取配置文件的模块

3、图像预测模块

配置文件

[image]
image_path=/home/fantasy/Pictures/cat.jpg
[model]
model=vgg16
[weights]
weight=imagenet

获取配置文件的模块

import configparser
cf = configparser.ConfigParser()
cf.read("configs.cnf")
def getOption(section, key):
  return cf.get(section, key)

图像预测模块以及主要实现

# keras 提供了一些预训练模型,也就是开箱即用的 已经训练好的模型
# 我们可以使用这些预训练模型来进行图像识别,目前的预训练模型大概可以识别2.2w种类型的东西
# 可用的模型:
# VGG16
# VGG19
# ResNet50
# InceptionResNetV2
# InceptionV3 
# 这些模型被集成到 keras.applications 中
# 当我们使用了这些内置的预训练模型时,模型文件会被下载到 ~/.keras/models/并在载入模型时自动载入
# VGG16,VGG19,ResNet50 默认输入尺寸是224x224
# InceptionV3, InceptionResNetV2 模型的默认输入尺寸是299x299

# 使用内置的预训练模型的步骤
# step1 导入需要的模型
# step2 将需要识别的图像数据转换为矩阵(矩阵的大小需要根据模型的不同而定)
# step3 将图像矩阵丢到模型里面进行预测
# -------------------------------------------------------
# step1 
import cv2
import numpy as np
from getConfig import getOption
from keras.applications import VGG16
from keras.applications import VGG19
from keras.applications import ResNet50
from keras.applications import InceptionV3
from keras.applications import InceptionResNetV2
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.inception_v3 import preprocess_input

class ImageTools(object):
  """
  使用keras预训练模型进行图像识别
  """
  def __init__(self, img, model, w):
    self.image = img
    self.model = model
    self.weight = w
    
  # step2
  def image2matrix(self, img):
    """
    将图像转为矩阵
    """
    image = cv2.imread(img)
    image = cv2.resize(image, self.dim)
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)
    return image

  @property
  def dim(self):
    """
    图像矩阵的维度
    """
    if self.model in ["inceptionv3", "inceptionresnetv2"]:
      shape = (299, 299)
    else:
      shape = (224, 224)

    return shape

  @property
  def Model(self):
    """
    模型
    """
    models = {
      "vgg16": VGG16,
      "vgg19": VGG19,
      "resnet50": ResNet50,
      "inceptionv3": InceptionV3,
      "inceptionresnetv2": InceptionResNetV2
    }
    return models[self.model]

  # step3 
  def prediction(self):
    """
    预测
    """
    model = self.Model(weights=self.weight)
    if self.model in ["inceptionv3", "inceptionresnetv2"]:
      preprocess = preprocess_input(self.image2matrix(self.image))
    else:
      preprocess = imagenet_utils.preprocess_input(self.image2matrix(self.image))

    predict = model.predict(preprocess)

    decode_predict = decode_predictions(predict)

    for (item, (imgId, imgLabel, proba)) in enumerate(decode_predict[0]):
      print("{}, {}, {:.2f}%".format(item + 1, imgLabel, proba * 100))


if __name__ == "__main__":
  image = getOption("image", "image_path")
  model = getOption("model", "model")
  weight = getOption("weights", "weight")
  tools = ImageTools(image, model, weight)
  tools.prediction()

运行起来时会将模型文件下载到本机,因此第一次运行会比较久(有可能出现的情况就是下载不了,被墙了)

我们来看看使用VGG16的模型预测输出的效果如何

最后如果大家需要使用其他模型时修改 配置文件的model 即可

以上这篇使用keras内置的模型进行图片预测实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python中的协程深入理解

    python中的协程深入理解

    这篇文章主要给大家介绍了关于python中协程的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-06-06
  • Python实现PPT幻灯片的添加、删除或隐藏操作

    Python实现PPT幻灯片的添加、删除或隐藏操作

    PowerPoint文档是商务、教育、创意等各领域常见的用于展示、教育和传达信息的格式,在制作PPT演示文稿时,灵活地操作幻灯片是提高演示效果、优化内容组织的关键步骤,本文给大家介绍了Python 操作PPT幻灯片- 添加、删除、或隐藏幻灯片,需要的朋友可以参考下
    2024-08-08
  • tensorflow 变长序列存储实例

    tensorflow 变长序列存储实例

    今天小编就为大家分享一篇tensorflow 变长序列存储实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • OpenCV半小时掌握基本操作之高斯双边

    OpenCV半小时掌握基本操作之高斯双边

    这篇文章主要介绍了OpenCV基本操作之高斯双边,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • python基础教程之udp端口扫描

    python基础教程之udp端口扫描

    开发一个程序,用于获取局域网中开启snmp服务的主机ip地址列表,并写入相应文件以便其它程序使用。下面是实现方法
    2014-02-02
  • python实现百万答题自动百度搜索答案

    python实现百万答题自动百度搜索答案

    这篇文章主要为大家详细介绍了python实现百万答题自动百度搜索答案,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • 在Python中通过机器学习实现人体姿势估计

    在Python中通过机器学习实现人体姿势估计

    姿态检测是计算机视觉领域的一个活跃研究领域。这篇文章将为大家介绍在Python中如何利用机器学习进行人体姿势估计,感兴趣的小伙伴可以了解一下
    2021-12-12
  • Python字符串、元组、列表、字典互相转换的方法

    Python字符串、元组、列表、字典互相转换的方法

    这篇文章主要介绍了Python字符串、元组、列表、字典互相转换的方法的相关资料,需要的朋友可以参考下
    2016-01-01
  • 分享Pytest fixture参数传递的几种方式

    分享Pytest fixture参数传递的几种方式

    这篇文章主要分享的是Pytest fixture参数传递的几种方式,文章基于python的相关资料展开对主题的详细介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-04-04
  • Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)

    Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)

    下面小编就为大家带来一篇Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05

最新评论