Keras SGD 随机梯度下降优化器参数设置方式

 更新时间:2020年06月19日 15:37:26   作者:DexterLeiX  
这篇文章主要介绍了Keras SGD 随机梯度下降优化器参数设置方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

SGD 随机梯度下降

Keras 中包含了各式优化器供我们使用,但通常我会倾向于使用 SGD 验证模型能否快速收敛,然后调整不同的学习速率看看模型最后的性能,然后再尝试使用其他优化器。

Keras 中文文档中对 SGD 的描述如下:

keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)

随机梯度下降法,支持动量参数,支持学习衰减率,支持Nesterov动量

参数:

lr:大或等于0的浮点数,学习率

momentum:大或等于0的浮点数,动量参数

decay:大或等于0的浮点数,每次更新后的学习率衰减值

nesterov:布尔值,确定是否使用Nesterov动量

参数设置

Time-Based Learning Rate Schedule

Keras 已经内置了一个基于时间的学习速率调整表,并通过上述参数中的 decay 来实现,学习速率的调整公式如下:

LearningRate = LearningRate * 1/(1 + decay * epoch)

当我们初始化参数为:

LearningRate = 0.1
decay = 0.001

大致变化曲线如下(非实际曲线,仅示意):

当然,方便起见,我们可以将优化器设置如下,使其学习速率随着训练轮次变化:

sgd = SGD(lr=learning_rate, decay=learning_rate/nb_epoch, momentum=0.9, nesterov=True)

Drop-Based Learning Rate Schedule

另外一种学习速率的调整方法思路是保持一个恒定学习速率一段时间后立即降低,是一种突变的方式。通常整个变化趋势为指数形式。

对应的学习速率变化公式如下:

LearningRate = InitialLearningRate * DropRate^floor(Epoch / EpochDrop)

实现需要使用 Keras 中的 LearningRateScheduler 模块:

from keras.callbacks import LearningRateScheduler
# learning rate schedule
def step_decay(epoch):
 initial_lrate = 0.1
 drop = 0.5
 epochs_drop = 10.0
 lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop))
 return lrate

lrate = LearningRateScheduler(step_decay)

# Compile model
sgd = SGD(lr=0.0, momentum=0.9, decay=0.0, nesterov=False)
model.compile(loss=..., optimizer=sgd, metrics=['accuracy'])

# Fit the model
model.fit(X, Y, ..., callbacks=[lrate])

补充知识:keras中的BGD和SGD

关于BGD和SGD

首先BGD为批梯度下降,即所有样本计算完毕后才进行梯度更新;而SGD为随机梯度下降,随机计算一次样本就进行梯度下降,所以速度快很多但容易陷入局部最优值。

折中的办法是采用小批的梯度下降,即把数据分成若干个批次,一批来进行一次梯度下降,减少随机性,计算量也不是很大。 mini-batch

keras中的batch_size就是小批梯度下降。

以上这篇Keras SGD 随机梯度下降优化器参数设置方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python将一个CSV文件里的数据追加到另一个CSV文件的方法

    Python将一个CSV文件里的数据追加到另一个CSV文件的方法

    今天小编就为大家分享一篇Python将一个CSV文件里的数据追加到另一个CSV文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • TENSORFLOW变量作用域(VARIABLE SCOPE)

    TENSORFLOW变量作用域(VARIABLE SCOPE)

    这篇文章主要介绍了TENSORFLOW变量作用域(VARIABLE SCOPE),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01
  • python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

    python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

    这篇文章主要介绍了python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • conda安装tensorflow和conda常用命令小结

    conda安装tensorflow和conda常用命令小结

    这篇文章主要介绍了conda安装tensorflow和conda常用命令小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • python单链路性能测试实践

    python单链路性能测试实践

    这篇文章主要为大家介绍了python单链路性能测试实践示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-07-07
  • Python实现使用卷积提取图片轮廓功能示例

    Python实现使用卷积提取图片轮廓功能示例

    这篇文章主要介绍了Python实现使用卷积提取图片轮廓功能,涉及Python数值运算与图像处理相关操作技巧,需要的朋友可以参考下
    2018-05-05
  • python调用函数、类和文件操作简单实例总结

    python调用函数、类和文件操作简单实例总结

    这篇文章主要介绍了python调用函数、类和文件操作,结合简单实例形式总结分析了Python调用函数、类和文件操作的各种常见操作技巧,需要的朋友可以参考下
    2019-11-11
  • 基于python实现动态烟雾效果

    基于python实现动态烟雾效果

    动态烟雾效果常用于游戏和动画中,为场景增添 逼真的视觉效果,在这篇博客中,我们将使用Python和Pygame库来创建一个逼真的烟雾动画效果,感兴趣的小伙伴跟着小编一起来看看吧
    2024-09-09
  • Python实现爬虫从网络上下载文档的实例代码

    Python实现爬虫从网络上下载文档的实例代码

    小编最近在研究python,接触到了爬虫,本文给大家带来了Python实现爬虫从网络上下载文档的知识。下面小编把具体实例代码分享到脚本之家平台,感兴趣的朋友参考下吧
    2018-06-06
  • 让Python更加充分的使用Sqlite3

    让Python更加充分的使用Sqlite3

    这篇文章主要为大家详细介绍了Python更加充分的使用Sqlite3的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12

最新评论