Keras-多输入多输出实例(多任务)

 更新时间:2020年06月22日 09:26:27   作者:happyprince  
这篇文章主要介绍了Keras-多输入多输出实例(多任务),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

1、模型结果设计

2、代码

from keras import Input, Model
from keras.layers import Dense, Concatenate
import numpy as np
from keras.utils import plot_model
from numpy import random as rd

samples_n = 3000
samples_dim_01 = 2
samples_dim_02 = 2
# 样本数据
x1 = rd.rand(samples_n, samples_dim_01)
x2 = rd.rand(samples_n, samples_dim_02)
y_1 = []
y_2 = []
y_3 = []
for x11, x22 in zip(x1, x2):
  y_1.append(np.sum(x11) + np.sum(x22))
  y_2.append(np.max([np.max(x11), np.max(x22)]))
  y_3.append(np.min([np.min(x11), np.min(x22)]))
y_1 = np.array(y_1)
y_1 = np.expand_dims(y_1, axis=1)
y_2 = np.array(y_2)
y_2 = np.expand_dims(y_2, axis=1)
y_3 = np.array(y_3)
y_3 = np.expand_dims(y_3, axis=1)

# 输入层
inputs_01 = Input((samples_dim_01,), name='input_1')
inputs_02 = Input((samples_dim_02,), name='input_2')
# 全连接层
dense_01 = Dense(units=3, name="dense_01", activation='softmax')(inputs_01)
dense_011 = Dense(units=3, name="dense_011", activation='softmax')(dense_01)
dense_02 = Dense(units=6, name="dense_02", activation='softmax')(inputs_02)
# 加入合并层
merge = Concatenate()([dense_011, dense_02])
# 分成两类输出 --- 输出01
output_01 = Dense(units=6, activation="relu", name='output01')(merge)
output_011 = Dense(units=1, activation=None, name='output011')(output_01)
# 分成两类输出 --- 输出02
output_02 = Dense(units=1, activation=None, name='output02')(merge)
# 分成两类输出 --- 输出03
output_03 = Dense(units=1, activation=None, name='output03')(merge)
# 构造一个新模型
model = Model(inputs=[inputs_01, inputs_02], outputs=[output_011,
                           output_02,
                           output_03
                           ])
# 显示模型情况
plot_model(model, show_shapes=True)
print(model.summary())
# # 编译
# model.compile(optimizer="adam", loss='mean_squared_error', loss_weights=[1,
#                                     0.8,
#                                     0.8
#                                     ])
# # 训练
# model.fit([x1, x2], [y_1,
#           y_2,
#           y_3
#           ], epochs=50, batch_size=32, validation_split=0.1)

# 以下的方法可灵活设置
model.compile(optimizer='adam',
       loss={'output011': 'mean_squared_error',
          'output02': 'mean_squared_error',
          'output03': 'mean_squared_error'},
       loss_weights={'output011': 1,
              'output02': 0.8,
              'output03': 0.8})
model.fit({'input_1': x1,
      'input_2': x2},
     {'output011': y_1,
      'output02': y_2,
      'output03': y_3},
     epochs=50, batch_size=32, validation_split=0.1)

# 预测
test_x1 = rd.rand(1, 2)
test_x2 = rd.rand(1, 2)
test_y = model.predict(x=[test_x1, test_x2])
# 测试
print("测试结果:")
print("test_x1:", test_x1, "test_x2:", test_x2, "y:", test_y, np.sum(test_x1) + np.sum(test_x2))

补充知识:Keras多输出(多任务)如何设置fit_generator

在使用Keras的时候,因为需要考虑到效率问题,需要修改fit_generator来适应多输出

# create model
model = Model(inputs=x_inp, outputs=[main_pred, aux_pred])
# complie model
model.compile(
  optimizer=optimizers.Adam(lr=learning_rate),
  loss={"main": weighted_binary_crossentropy(weights), "auxiliary":weighted_binary_crossentropy(weights)},
  loss_weights={"main": 0.5, "auxiliary": 0.5},
  metrics=[metrics.binary_accuracy],
)
# Train model
model.fit_generator(
  train_gen, epochs=num_epochs, verbose=0, shuffle=True
)

Keras官方文档:

generator: A generator or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. The output of the generator must be either

a tuple (inputs, targets)

a tuple (inputs, targets, sample_weights).

Keras设计多输出(多任务)使用fit_generator的步骤如下:

根据官方文档,定义一个generator或者一个class继承Sequence

class Batch_generator(Sequence):
 """
 用于产生batch_1, batch_2(记住是numpy.array格式转换)
 """
 y_batch = {'main':batch_1,'auxiliary':batch_2}
 return X_batch, y_batch

# or in another way
def batch_generator():
 """
 用于产生batch_1, batch_2(记住是numpy.array格式转换)
 """
 yield X_batch, {'main': batch_1,'auxiliary':batch_2}

重要的事情说三遍(亲自采坑,搜了一大圈才发现滴):

如果是多输出(多任务)的时候,这里的target是字典类型

如果是多输出(多任务)的时候,这里的target是字典类型

如果是多输出(多任务)的时候,这里的target是字典类型

以上这篇Keras-多输入多输出实例(多任务)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python实现电子词典

    python实现电子词典

    这篇文章主要为大家详细介绍了python实现电子词典,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2014-01-01
  • Python实现TCP协议下的端口映射功能的脚本程序示例

    Python实现TCP协议下的端口映射功能的脚本程序示例

    端口映射一个最基本的运作形态就是通过一个中间端口将一个端口发送的数据全部转给另一个端口,well,这里我们就来看一下Python实现TCP协议下的端口映射功能的脚本程序示例
    2016-06-06
  • pytorch cuda安装报错的解决方法

    pytorch cuda安装报错的解决方法

    这篇文章主要给大家介绍了关于pytorch cuda安装报错的解决方法,文中通过图文介绍的非常详细,对大家学习或者使用Pytorch具有一定的参考学习价值,需要的朋友可以参考下
    2023-01-01
  • 如何用python获取EXCEL文件内容并保存到DBC

    如何用python获取EXCEL文件内容并保存到DBC

    很多时候,使用python进行数据分析的第一步就是读取excel文件,下面这篇文章主要给大家介绍了关于如何用python获取EXCEL文件内容并保存到DBC的相关资料,需要的朋友可以参考
    2023-12-12
  • PyTorch读取Cifar数据集并显示图片的实例讲解

    PyTorch读取Cifar数据集并显示图片的实例讲解

    今天小编就为大家分享一篇PyTorch读取Cifar数据集并显示图片的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python的Flask项目中获取请求用户IP地址 addr问题

    Python的Flask项目中获取请求用户IP地址 addr问题

    这篇文章主要介绍了Python的Flask项目中获取请求用户IP地址 addr问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • 在Python中使用mechanize模块模拟浏览器功能

    在Python中使用mechanize模块模拟浏览器功能

    这篇文章主要介绍了在Python中使用mechanize模块模拟浏览器功能,包括使用cookie和设置代理等功能的实现,需要的朋友可以参考下
    2015-05-05
  • NumPy中掩码数组的操作

    NumPy中掩码数组的操作

    本文主要介绍了NumPy中掩码数组的操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python实现数据清洗(缺失值与异常值处理)

    python实现数据清洗(缺失值与异常值处理)

    今天小编就为大家分享一篇python实现数据清洗(缺失值与异常值处理),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • PyTorch零基础入门之构建模型基础

    PyTorch零基础入门之构建模型基础

    PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序,它是一个可续计算包,提供两个高级功能:1、具有强大的GPU加速的张量计算(如NumPy)。2、包含自动求导系统的深度神经网络
    2021-10-10

最新评论