keras使用Sequence类调用大规模数据集进行训练的实现

 更新时间:2020年06月22日 09:45:01   作者:aszxs  
这篇文章主要介绍了keras使用Sequence类调用大规模数据集进行训练的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

使用Keras如果要使用大规模数据集对网络进行训练,就没办法先加载进内存再从内存直接传到显存了,除了使用Sequence类以外,还可以使用迭代器去生成数据,但迭代器无法在fit_generation里开启多进程,会影响数据的读取和预处理效率,在本文中就不在叙述了,有需要的可以另外去百度。

下面是我所使用的代码

class SequenceData(Sequence):
  def __init__(self, path, batch_size=32):
    self.path = path
    self.batch_size = batch_size
    f = open(path)
    self.datas = f.readlines()
    self.L = len(self.datas)
    self.index = random.sample(range(self.L), self.L)
  #返回长度,通过len(<你的实例>)调用
  def __len__(self):
    return self.L - self.batch_size
  #即通过索引获取a[0],a[1]这种
  def __getitem__(self, idx):
    batch_indexs = self.index[idx:(idx+self.batch_size)]
    batch_datas = [self.datas[k] for k in batch_indexs]
    img1s,img2s,audios,labels = self.data_generation(batch_datas)
    return ({'face1_input_1': img1s, 'face2_input_2': img2s, 'input_3':audios},{'activation_7':labels})

  def data_generation(self, batch_datas):
    #预处理操作
    return img1s,img2s,audios,labels

然后在代码里通过fit_generation函数调用并训练

这里要注意,use_multiprocessing参数是是否开启多进程,由于python的多线程不是真的多线程,所以多进程还是会获得比较客观的加速,但不支持windows,windows下python无法使用多进程。

D = SequenceData('train.csv')
model_train.fit_generator(generator=D,steps_per_epoch=int(len(D)), 
          epochs=2, workers=20, #callbacks=[checkpoint],
          use_multiprocessing=True, validation_data=SequenceData('vali.csv'),validation_steps=int(20000/32)) 

同样的,也可以在测试的时候使用

model.evaluate_generator(generator=SequenceData('face_test.csv'),steps=int(125100/32),workers=32)

补充知识:keras数据自动生成器,继承keras.utils.Sequence,结合fit_generator实现节约内存训练

我就废话不多说了,大家还是直接看代码吧~

#coding=utf-8
'''
Created on 2018-7-10
'''
import keras
import math
import os
import cv2
import numpy as np
from keras.models import Sequential
from keras.layers import Dense

class DataGenerator(keras.utils.Sequence):
  
  def __init__(self, datas, batch_size=1, shuffle=True):
    self.batch_size = batch_size
    self.datas = datas
    self.indexes = np.arange(len(self.datas))
    self.shuffle = shuffle

  def __len__(self):
    #计算每一个epoch的迭代次数
    return math.ceil(len(self.datas) / float(self.batch_size))

  def __getitem__(self, index):
    #生成每个batch数据,这里就根据自己对数据的读取方式进行发挥了
    # 生成batch_size个索引
    batch_indexs = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
    # 根据索引获取datas集合中的数据
    batch_datas = [self.datas[k] for k in batch_indexs]

    # 生成数据
    X, y = self.data_generation(batch_datas)

    return X, y

  def on_epoch_end(self):
    #在每一次epoch结束是否需要进行一次随机,重新随机一下index
    if self.shuffle == True:
      np.random.shuffle(self.indexes)

  def data_generation(self, batch_datas):
    images = []
    labels = []

    # 生成数据
    for i, data in enumerate(batch_datas):
      #x_train数据
      image = cv2.imread(data)
      image = list(image)
      images.append(image)
      #y_train数据 
      right = data.rfind("\\",0)
      left = data.rfind("\\",0,right)+1
      class_name = data[left:right]
      if class_name=="dog":
        labels.append([0,1])
      else: 
        labels.append([1,0])
    #如果为多输出模型,Y的格式要变一下,外层list格式包裹numpy格式是list[numpy_out1,numpy_out2,numpy_out3]
    return np.array(images), np.array(labels)
  
# 读取样本名称,然后根据样本名称去读取数据
class_num = 0
train_datas = [] 
for file in os.listdir("D:/xxx"):
  file_path = os.path.join("D:/xxx", file)
  if os.path.isdir(file_path):
    class_num = class_num + 1
    for sub_file in os.listdir(file_path):
      train_datas.append(os.path.join(file_path, sub_file))

# 数据生成器
training_generator = DataGenerator(train_datas)

#构建网络
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=784))
model.add(Dense(units=2, activation='softmax'))
model.compile(loss='categorical_crossentropy',
       optimizer='sgd',
       metrics=['accuracy'])
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit_generator(training_generator, epochs=50,max_queue_size=10,workers=1)

以上这篇keras使用Sequence类调用大规模数据集进行训练的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python中ASCII码字符与int之间的转换方法

    python中ASCII码字符与int之间的转换方法

    今天小编就为大家分享一篇python中ASCII码字符与int之间的转换方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python assert语句的简单使用示例

    Python assert语句的简单使用示例

    这篇文章主要给大家介绍了关于Python assert语句的简单使用,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-07-07
  • Python实现的企业粉丝抽奖功能示例

    Python实现的企业粉丝抽奖功能示例

    这篇文章主要介绍了Python实现的企业粉丝抽奖功能,涉及Python数值运算与随机数生成相关操作技巧,需要的朋友可以参考下
    2019-07-07
  • Python高级数据分析之pandas和matplotlib绘图

    Python高级数据分析之pandas和matplotlib绘图

    Matplotlib是一个强大的Python绘图和数据可视化的工具包,下面这篇文章主要给大家介绍了关于Python高级数据分析之pandas和matplotlib绘图的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2022-05-05
  • 用python结合jieba和wordcloud实现词云效果

    用python结合jieba和wordcloud实现词云效果

    词云,顾名思义就是很多个单词,然后通过出现的频率或者比重之类的标准汇聚成一个云朵的样子嘛,其实呢现在网上已经有很多能自动生成词云的工具了,比如Wordle,Tagxedo等等,Python也能实现这样的效果,我们通过jieba库和wordcloud库也能十分轻松的完成词云的构建
    2017-09-09
  • python 字符串追加实例

    python 字符串追加实例

    今天小编就为大家分享一篇python 字符串追加实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python应用开发之实现串口通信

    Python应用开发之实现串口通信

    在嵌入式开发中我们经常会用到串口,串口通信简单,使用起来方便,且适用场景多。本文为大家准备了Python实现串口通信的示例代码,需要的可以参考一下
    2022-11-11
  • python 虚拟环境详解

    python 虚拟环境详解

    这篇文章主要为大家介绍了python 虚拟环境,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助<BR>
    2021-12-12
  • Python3中的多行输入问题

    Python3中的多行输入问题

    这篇文章主要介绍了Python3中的多行输入问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-05-05
  • Python读取Json字典写入Excel表格的方法

    Python读取Json字典写入Excel表格的方法

    这篇文章主要为大家详细介绍了Python读取Json字典写入Excel表格的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01

最新评论