python 使用多线程创建一个Buffer缓存器的实现思路
这几天学习人脸识别的时候,虽然运行的没有问题,但我却意识到了一个问题
在图片进行传输的时候,GPU的利用率为0
也就是说,图片的传输速度和GPU的处理速度不能很好衔接
于是,我打算利用多线程开发一个buffer缓存
实现的思路如下
定义一个Buffer类,再其构造函数中创建一个buffer空间(这里最好使用list类型)
我们还需要的定义线程锁LOCK(数据传输和提取的时候会用到)
因为需要两种方法(读数据和取数据),所以我们需要定义两个锁
实现的代码如下:
#-*-coding:utf-8-*- import threading class Buffer: def __init__(self,size): self.size = size self.buffer = [] self.lock = threading.Lock() self.has_data = threading.Condition(self.lock) # small sock depand on big sock self.has_pos = threading.Condition(self.lock) def get_size(self): return self.size def get(self): with self.has_data: while len(self.buffer) == 0: print("I can't go out has_data") self.has_data.wait() print("I can go out has_data") result = self.buffer[0] del self.buffer[0] self.has_pos.notify_all() return result def put(self, data): with self.has_pos: #print(self.count) while len(self.buffer)>=self.size: print("I can't go out has_pos") self.has_pos.wait() print("I can go out has_pos") # If the length of data bigger than buffer's will wait self.buffer.append(data) # some thread is wait data ,so data need release self.has_data.notify_all() if __name__ == "__main__": buffer = Buffer(3) def get(): for _ in range(10000): print(buffer.get()) def put(): a = [[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]] for _ in range(10000): buffer.put(a) th1 = threading.Thread(target=put) th2 = threading.Thread(target=get) th1.start() th2.start() th1.join() th2.join()
总结
到此这篇关于python 使用多线程创建一个Buffer缓存器的文章就介绍到这了,更多相关python 多线程Buffer缓存器内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python3中dict.keys().sort()用不了的解决方法
本文主要介绍了python3中dict.keys().sort()用不了的解决方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2021-12-12解决Numpy报错:ImportError: numpy.core.multiarray faile
这篇文章主要介绍了解决Numpy报错:ImportError: numpy.core.multiarray failed问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2024-01-01
最新评论