keras 简单 lstm实例(基于one-hot编码)

 更新时间:2020年07月02日 10:19:59   作者:赶圩归来阿理理  
这篇文章主要介绍了keras 简单 lstm实例(基于one-hot编码),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

简单的LSTM问题,能够预测一句话的下一个字词是什么

固定长度的句子,一个句子有3个词。

使用one-hot编码

各种引用

import keras
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
import numpy as np

数据预处理

data = 'abcdefghijklmnopqrstuvwxyz'
data_set = set(data)
 
word_2_int = {b:a for a,b in enumerate(data_set)}
int_2_word = {a:b for a,b in enumerate(data_set)}
 
word_len = len(data_set)
print(word_2_int)
print(int_2_word)

一些辅助函数

def words_2_ints(words):
 ints = []
 for itmp in words:
  ints.append(word_2_int[itmp])
 return ints
 
print(words_2_ints('ab'))
 
def words_2_one_hot(words, num_classes=word_len):
 return keras.utils.to_categorical(words_2_ints(words), num_classes=num_classes)
print(words_2_one_hot('a'))
def get_one_hot_max_idx(one_hot):
 idx_ = 0
 max_ = 0
 for i in range(len(one_hot)):
  if max_ < one_hot[i]:
   max_ = one_hot[i]
   idx_ = i
 return idx_
 
def one_hot_2_words(one_hot):
 tmp = []
 for itmp in one_hot:
  tmp.append(int_2_word[get_one_hot_max_idx(itmp)])
 return "".join(tmp)
 
print( one_hot_2_words(words_2_one_hot('adhjlkw')) )

构造样本

time_step = 3 #一个句子有3个词
 
def genarate_data(batch_size=5, genarate_num=100):
 #genarate_num = -1 表示一直循环下去,genarate_num=1表示生成一个batch的数据,以此类推
 #这里,我也不知道数据有多少,就这么循环的生成下去吧。
 #入参batch_size 控制一个batch 有多少数据,也就是一次要yield进多少个batch_size的数据
 '''
 例如,一个batch有batch_size=5个样本,那么对于这个例子,需要yield进的数据为:
 abc->d
 bcd->e
 cde->f
 def->g
 efg->h
 然后把这些数据都转换成one-hot形式,最终数据,输入x的形式为:
 
 [第1个batch]
 [第2个batch]
 ...
 [第genarate_num个batch]
 
 每个batch的形式为:
 
 [第1句话(如abc)]
 [第2句话(如bcd)]
 ...
 每一句话的形式为:
 
 [第1个词的one-hot表示]
 [第2个词的one-hot表示]
 ...
 '''
 cnt = 0
 batch_x = []
 batch_y = []
 sample_num = 0
 while(True):
  for i in range(len(data) - time_step):
   batch_x.append(words_2_one_hot(data[i : i+time_step]))
   batch_y.append(words_2_one_hot(data[i+time_step])[0]) #这里数据加[0],是为了符合keras的输出数据格式。 因为不加[0],表示是3维的数据。 你可以自己尝试不加0,看下面的test打印出来是什么
   sample_num += 1
   #print('sample num is :', sample_num)
   if len(batch_x) == batch_size:
    yield (np.array(batch_x), np.array(batch_y))
    batch_x = []
    batch_y = []
    if genarate_num != -1:
     cnt += 1
 
    if cnt == genarate_num:
     return
   
for test in genarate_data(batch_size=3, genarate_num=1):
 print('--------x:')
 print(test[0])
 print('--------y:')
 print(test[1])

搭建模型并训练

model = Sequential()
 
# LSTM输出维度为 128
# input_shape控制输入数据的形态
# time_stemp表示一句话有多少个单词
# word_len 表示一个单词用多少维度表示,这里是26维
 
model.add(LSTM(128, input_shape=(time_step, word_len)))
model.add(Dense(word_len, activation='softmax')) #输出用一个softmax,来分类,维度就是26,预测是哪一个字母
 
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
 
model.fit_generator(generator=genarate_data(batch_size=5, genarate_num=-1), epochs=50, steps_per_epoch=10)
#steps_per_epoch的意思是,一个epoch中,执行多少个batch
#batch_size是一个batch中,有多少个样本。
#所以,batch_size*steps_per_epoch就等于一个epoch中,训练的样本数量。(这个说法不对!再观察看看吧)
#可以将epochs设置成1,或者2,然后在genarate_data中打印样本序号,观察到样本总数。

使用训练后的模型进行预测:

result = model.predict(np.array([words_2_one_hot('bcd')]))

print(one_hot_2_words(result))

可以看到,预测结果为

e

补充知识:训练集产生的onehot编码特征如何在测试集、预测集复现

数据处理中有时要用到onehot编码,如果使用pandas自带的get_dummies方法,训练集产生的onehot编码特征会跟测试集、预测集不一样,正确的方式是使用sklearn自带的OneHotEncoder。

代码

import pandas as pd
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(handle_unknown='ignore')
data_train=pd.DataFrame({'职业':['数据挖掘工程师','数据库开发工程师','数据分析师','数据分析师'],
     '籍贯':['福州','厦门','泉州','龙岩']})
ohe.fit(data_train)#训练规则
feature_names=ohe.get_feature_names(data_train.columns)#获取编码后的特征名
data_train_onehot=pd.DataFrame(ohe.transform(data_train).toarray(),columns=feature_names)#应用规则在训练集上
 
data_new=pd.DataFrame({'职业':['数据挖掘工程师','jave工程师'],
     '籍贯':['福州','莆田']})
data_new_onehot=pd.DataFrame(ohe.transform(data_new).toarray(),columns=feature_names)#应用规则在预测集上

以上这篇keras 简单 lstm实例(基于one-hot编码)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 一文教你掌握Python中Lambda表达式的5种实用技巧

    一文教你掌握Python中Lambda表达式的5种实用技巧

    在Python编程的宇宙里,有一个强大而灵活的工具经常被高效的程序员所利用——那就是Lambda表达式,下面就让我们深入了解Lambda表达式的妙用吧
    2024-01-01
  • 在Python中将函数作为另一个函数的参数传入并调用的方法

    在Python中将函数作为另一个函数的参数传入并调用的方法

    今天小编就为大家分享一篇在Python中将函数作为另一个函数的参数传入并调用的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python类的实例化问题解决

    python类的实例化问题解决

    这篇文章主要介绍了python类的实例化问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • python实现将文本转换成语音的方法

    python实现将文本转换成语音的方法

    这篇文章主要介绍了python实现将文本转换成语音的方法,涉及Python中pyTTS模块的相关使用技巧,需要的朋友可以参考下
    2015-05-05
  • 关于CUDA out of memory的解决方案

    关于CUDA out of memory的解决方案

    这篇文章主要介绍了关于CUDA out of memory的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • Pycharm 2019 破解激活方法图文详解

    Pycharm 2019 破解激活方法图文详解

    这篇文章主要介绍了Pycharm 2019 破解激活方法图文详解,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Python进程间通信multiprocess代码实例

    Python进程间通信multiprocess代码实例

    这篇文章主要介绍了Python进程间通信multiprocess代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • Python字符串的拆分与连接详解

    Python字符串的拆分与连接详解

    由于字符串数据几乎无处不在,因此掌握有关字符串的交易工具非常重要。幸运的是,Python 使字符串操作变得非常简单,尤其是与其他语言甚至旧版本的 Python 相比时。本文将为大家详细介绍Python中字符串的拆分与连接,需要的可以参考一下
    2021-12-12
  • python matlibplot绘制3D图形

    python matlibplot绘制3D图形

    这篇文章主要为大家详细介绍了python matlibplot绘制3D图形,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-07-07
  • 使用python 计算百分位数实现数据分箱代码

    使用python 计算百分位数实现数据分箱代码

    这篇文章主要介绍了使用python 计算百分位数实现数据分箱代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03

最新评论