通过实例解析Java分布式锁三种实现方法

 更新时间:2020年07月06日 10:13:07   作者:BarryW  
这篇文章主要介绍了通过实例解析Java分布式锁三种实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

分布式锁三种实现方式:

一, 基于数据库实现分布式锁

1. 悲观锁

利用select … where … for update 排他锁

注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。

2. 乐观锁

所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才能觉察到。我们的抢购、秒杀就是用了这种实现以防止超卖。
通过增加递增的版本号字段实现乐观锁

二, 基于缓存(Redis等)实现分布式锁

1. 使用命令介绍:

(1)SETNX

SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

(2)expire

expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

(3)delete

delete key:删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

2. 实现思想:

(1)获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。

(2)获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。

(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

3.分布式锁的简单实现代码:

1 /**
 2 * 分布式锁的简单实现代码 4 */
 5 public class DistributedLock {
 6 
 7   private final JedisPool jedisPool;
 8 
 9   public DistributedLock(JedisPool jedisPool) {
 10     this.jedisPool = jedisPool;
 11   }
 12 
 13   /**
 14   * 加锁
 15   * @param lockName    锁的key
 16   * @param acquireTimeout 获取超时时间
 17   * @param timeout    锁的超时时间
 18   * @return 锁标识
 19   */
 20   public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {
 21     Jedis conn = null;
 22     String retIdentifier = null;
 23     try {
 24       // 获取连接
 25       conn = jedisPool.getResource();
 26       // 随机生成一个value
 27       String identifier = UUID.randomUUID().toString();
 28       // 锁名,即key值
 29       String lockKey = "lock:" + lockName;
 30       // 超时时间,上锁后超过此时间则自动释放锁
 31       int lockExpire = (int) (timeout / 1000);
 32 
 33       // 获取锁的超时时间,超过这个时间则放弃获取锁
 34       long end = System.currentTimeMillis() + acquireTimeout;
 35       while (System.currentTimeMillis() < end) {
 36         if (conn.setnx(lockKey, identifier) == 1) {
 37           conn.expire(lockKey, lockExpire);
 38           // 返回value值,用于释放锁时间确认
 39           retIdentifier = identifier;
 40           return retIdentifier;
 41         }
 42         // 返回-1代表key没有设置超时时间,为key设置一个超时时间
 43         if (conn.ttl(lockKey) == -1) {
 44           conn.expire(lockKey, lockExpire);
 45         }
 46 
 47         try {
 48           Thread.sleep(10);
 49         } catch (InterruptedException e) {
 50           Thread.currentThread().interrupt();
 51         }
 52       }
 53     } catch (JedisException e) {
 54       e.printStackTrace();
 55     } finally {
 56       if (conn != null) {
 57         conn.close();
 58       }
 59     }
 60     return retIdentifier;
 61   }
 62 
 63   /**
 64   * 释放锁
 65   * @param lockName  锁的key
 66   * @param identifier 释放锁的标识
 67   * @return
 68   */
 69   public boolean releaseLock(String lockName, String identifier) {
 70     Jedis conn = null;
 71     String lockKey = "lock:" + lockName;
 72     boolean retFlag = false;
 73     try {
 74       conn = jedisPool.getResource();
 75       while (true) {
 76         // 监视lock,准备开始事务
 77         conn.watch(lockKey);
 78         // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
 79         if (identifier.equals(conn.get(lockKey))) {
 80           Transaction transaction = conn.multi();
 81           transaction.del(lockKey);
 82           List<Object> results = transaction.exec();
 83           if (results == null) {
 84             continue;
 85           }
 86           retFlag = true;
 87         }
 88         conn.unwatch();
 89         break;
 90       }
 91     } catch (JedisException e) {
 92       e.printStackTrace();
 93     } finally {
 94       if (conn != null) {
 95         conn.close();
 96       }
 97     }
 98     return retFlag;
 99   }
100 }

4.测试刚才实现的分布式锁

例子中使用50个线程模拟秒杀一个商品,使用–运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

public class Service {

  private static JedisPool pool = null;

  private DistributedLock lock = new DistributedLock(pool);

  int n = 500;

  static {
    JedisPoolConfig config = new JedisPoolConfig();
    // 设置最大连接数
    config.setMaxTotal(200);
    // 设置最大空闲数
    config.setMaxIdle(8);
    // 设置最大等待时间
    config.setMaxWaitMillis(1000 * 100);
    // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
    config.setTestOnBorrow(true);
    pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
  }

  public void seckill() {
    // 返回锁的value值,供释放锁时候进行判断
    String identifier = lock.lockWithTimeout("resource", 5000, 1000);
    System.out.println(Thread.currentThread().getName() + "获得了锁");
    System.out.println(--n);
    lock.releaseLock("resource", identifier);
  }
}

模拟线程进行秒杀服务;

public class ThreadA extends Thread {
  private Service service;

  public ThreadA(Service service) {
    this.service = service;
  }

  @Override
  public void run() {
    service.seckill();
  }
}

public class Test {
  public static void main(String[] args) {
    Service service = new Service();
    for (int i = 0; i < 50; i++) {
      ThreadA threadA = new ThreadA(service);
      threadA.start();
    }
  }
}

结果如下,结果为有序的:

若注释掉使用锁的部分:

public void seckill() {
  // 返回锁的value值,供释放锁时候进行判断
  //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
  System.out.println(Thread.currentThread().getName() + "获得了锁");
  System.out.println(--n);
  //lock.releaseLock("resource", indentifier);
}

从结果可以看出,有一些是异步进行的:

三, 基于Zookeeper实现分布式锁

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

(1)创建一个目录mylock;

(2)线程A想获取锁就在mylock目录下创建临时顺序节点;

(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;

(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;

(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

实现源码如下:

import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang.StringUtils;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.retry.RetryNTimes;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.data.Stat;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.stereotype.Component;

/**
 * 分布式锁Zookeeper实现
 *
 */
@Slf4j
@Component
public class ZkLock implements DistributionLock {
private String zkAddress = "zk_adress";
  private static final String root = "package root";
  private CuratorFramework zkClient;

  private final String LOCK_PREFIX = "/lock_";

  @Bean
  public DistributionLock initZkLock() {
    if (StringUtils.isBlank(root)) {
      throw new RuntimeException("zookeeper 'root' can't be null");
    }
    zkClient = CuratorFrameworkFactory
        .builder()
        .connectString(zkAddress)
        .retryPolicy(new RetryNTimes(2000, 20000))
        .namespace(root)
        .build();
    zkClient.start();
    return this;
  }

  public boolean tryLock(String lockName) {
    lockName = LOCK_PREFIX+lockName;
    boolean locked = true;
    try {
      Stat stat = zkClient.checkExists().forPath(lockName);
      if (stat == null) {
        log.info("tryLock:{}", lockName);
        stat = zkClient.checkExists().forPath(lockName);
        if (stat == null) {
          zkClient
              .create()
              .creatingParentsIfNeeded()
              .withMode(CreateMode.EPHEMERAL)
              .forPath(lockName, "1".getBytes());
        } else {
          log.warn("double-check stat.version:{}", stat.getAversion());
          locked = false;
        }
      } else {
        log.warn("check stat.version:{}", stat.getAversion());
        locked = false;
      }
    } catch (Exception e) {
      locked = false;
    }
    return locked;
  }

  public boolean tryLock(String key, long timeout) {
    return false;
  }

  public void release(String lockName) {
    lockName = LOCK_PREFIX+lockName;
    try {
      zkClient
          .delete()
          .guaranteed()
          .deletingChildrenIfNeeded()
          .forPath(lockName);
      log.info("release:{}", lockName);
    } catch (Exception e) {
      log.error("删除", e);
    }
  }

  public void setZkAddress(String zkAddress) {
    this.zkAddress = zkAddress;
  }
}

优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。

缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。

四,对比

数据库分布式锁实现

缺点:

1.db操作性能较差,并且有锁表的风险

2.非阻塞操作失败后,需要轮询,占用cpu资源;

3.长时间不commit或者长时间轮询,可能会占用较多连接资源

Redis(缓存)分布式锁实现

缺点:

1.锁删除失败 过期时间不好控制

2.非阻塞,操作失败后,需要轮询,占用cpu资源;

ZK分布式锁实现

缺点:性能不如redis实现,主要原因是写操作(获取锁释放锁)都需要在Leader上执行,然后同步到follower。

总之:ZooKeeper有较好的性能和可靠性。

从理解的难易程度角度(从低到高)数据库 > 缓存 > Zookeeper

从实现的复杂性角度(从低到高)Zookeeper >= 缓存 > 数据库

从性能角度(从高到低)缓存 > Zookeeper >= 数据库

从可靠性角度(从高到低)Zookeeper > 缓存 > 数据库

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • RocketMQ事务消息保证消息的可靠性和一致性

    RocketMQ事务消息保证消息的可靠性和一致性

    RocketMQ事务消息是一种能够保证消息传递的可靠性和一致性的消息传递模式。它通过引入“半消息”和“事务状态”机制,实现了消息发送和本地事务执行的原子性,从而确保了消息的可靠性和一致性
    2023-04-04
  • Java语言之LinkedList和链表的实现方法

    Java语言之LinkedList和链表的实现方法

    LinkedList是由传统的链表数据结构演变而来的,链表是一种基本的数据结构,它可以动态地增加或删除元素,下面这篇文章主要给大家介绍了关于Java语言之LinkedList和链表的实现方法,需要的朋友可以参考下
    2023-05-05
  • Spring与bean有关的生命周期示例详解

    Spring与bean有关的生命周期示例详解

    这篇文章主要给大家介绍了关于Spring与bean有关的生命周期的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用Spring具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2020-07-07
  • Mybatis以main方法形式调用dao层执行代码实例

    Mybatis以main方法形式调用dao层执行代码实例

    这篇文章主要介绍了Mybatis以main方法形式调用dao层执行代码实例,MyBatis 是一款优秀的持久层框架,MyBatis 免除了几乎所有的 JDBC 代码以及设置参数和获取结果集的工作,需要的朋友可以参考下
    2023-08-08
  • java清除u盘内存卡里的垃圾文件示例

    java清除u盘内存卡里的垃圾文件示例

    手机内存卡空间被用光了,但又不知道哪个文件占用了太大,一个个文件夹去找又太麻烦,开发了个小程序把手机所有文件(包括路径下所有层次子文件夹下的文件)进行一个排序,这样你就可以找出哪个文件占用了内存太大了
    2014-02-02
  • springboot 热启动的过程图解

    springboot 热启动的过程图解

    这篇文章主要介绍了springboot 热启动的过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • MyBatis中一对多的xml配置方式(嵌套查询/嵌套结果)

    MyBatis中一对多的xml配置方式(嵌套查询/嵌套结果)

    这篇文章主要介绍了MyBatis中一对多的xml配置方式(嵌套查询/嵌套结果),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-03-03
  • Java调用第三方接口示范的实现

    Java调用第三方接口示范的实现

    这篇文章主要介绍了Java调用第三方接口示范的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • SpringCloud通用请求字段拦截处理方法

    SpringCloud通用请求字段拦截处理方法

    这篇文章主要介绍了SpringCloud通用请求字段拦截处理,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • JDK8中新增的原子性操作类LongAdder详解

    JDK8中新增的原子性操作类LongAdder详解

    这篇文章主要给大家介绍了关于JDK8中新增的原子性操作类LongAdder的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
    2017-08-08

最新评论