在keras中对单一输入图像进行预测并返回预测结果操作
模型经过训练测试之后,我们往往用一两张图对模型预测结果进行分析讨论,那么下面介绍在keras中用已训练的模型经过测试的方法。
下面是以利用预训练的ResNet来展示预测的效果,选了一张狗的图片,是来自一个kaggle比赛的。
预测结果第一个是一种苏格兰品种的狗,我也不知道准不准 == 。
import numpy as np from keras.applications.imagenet_utils import decode_predictions from keras.preprocessing import image from keras.applications import * import os # 忽略硬件加速的警告信息 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' file_path = 'images/0a70f64352edfef4c82c22015f0e3a20.jpg' img = image.load_img(file_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) model = ResNet50(weights='imagenet') y = model.predict(x) # print(np.argmax(y)) print('Predicted:', decode_predictions(y, top=3)[0])
讲几点:
1.输入img转成numpy数组,shape处理成(224,224,3)一般来讲,对于预训练模型是有一个最小的尺寸值,比最小尺寸大就可以了。在ResNet中,尺寸最小大于等于197即可。
2.要对输入shape扩维变成(None,224,224,3),第一个None是batches,模型并不知道你输入的batches是多少,但是维度必须和ResNet的输入要一致。
3.虽然用的是ResNet,自己设计的模型也一个道理,保留一下训练的权重,把model模块和预测模块分开写,这个时候load一下权重,再预测即可。
补充知识:keras:怎样使用 fit_generator 来训练多个不同类型的输出
这个例子非常简单明了,模型由1个输入,2个输出,两个输出的分支分别使用MSE作为损失。
x = Convolution2D(8, 5, 5, subsample=(1, 1))(image_input) x = Activation('relu')(x) x = Flatten()(x) x = Dense(50, W_regularizer=l2(0.0001))(x) x = Activation('relu')(x) output1 = Dense(1, activation='linear', name='output1')(x) output2 = Dense(1, activation='linear', name='output2')(x) model = Model(input=image_input, output=[output1, output2]) model.compile(optimizer='adam', loss={'output1': 'mean_squared_error', 'output2': 'mean_squared_error'})
产生训练数据的生成器,这里y=[y1,y2].
batch_generator(x, y, batch_size): ....transform images ....generate batch batch of size: batch_size yield(X_batch, {'output1': y1, 'output2': y2} ))
之后,调用fit_generator
model.fit_generator(batch_generator(X_train, y_train, batch_size))
原问题链接。
以上这篇在keras中对单一输入图像进行预测并返回预测结果操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
计算机二级python学习教程(1) 教大家如何学习python
这篇文章主要为大家详细介绍了计算机二级python学习教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2019-05-05python 在threading中如何处理主进程和子线程的关系
这篇文章主要介绍了python 在threading中如何处理主进程和子线程的关系,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04基于Python中capitalize()与title()的区别详解
下面小编就为大家分享一篇基于Python中capitalize()与title()的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2017-12-12
最新评论