使用python脚本自动生成K8S-YAML的方法示例
更新时间:2020年07月12日 09:17:44 作者:wx599981d853f0f
这篇文章主要介绍了使用python脚本自动生成K8S-YAML的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
1、生成 servie.yaml
1.1、yaml转json
service模板yaml
apiVersion: v1 kind: Service metadata: name: ${jarName} labels: name: ${jarName} version: v1 spec: ports: - port: ${port} targetPort: ${port} selector: name: ${jarName}
转成json的结构
{ "apiVersion": "v1", "kind": "Service", "metadata": { "name": "${jarName}", "labels": { "name": "${jarName}", "version": "v1" } }, "spec": { "ports": [ { "port": "${port}", "targetPort": "${port}" } ], "selector": { "name": "${jarName}" } } }
1.2、关键代码
# 通过传入service_name及ports列表 def create_service_yaml(service_name, ports): # 将yaml读取为json,然后修改所有需要修改的${jarName} service_data['metadata']['name'] = service_name service_data['metadata']['labels']['name'] = service_name service_data['spec']['selector']['name'] = service_name # .spec.ports 比较特殊,是一个字典列表,由于传入的ports难以确定数量,难以直接修改 # 新建一个列表,遍历传入的ports列表,将传入的每个port都生成为一个字典,添加入新列表中 new_spec_ports = [] for port in ports: port = int(port) new_port = {'port': port, 'targetPort': port} new_spec_ports.append(new_port) # 修改.spec.ports为新列表 service_data['spec']['ports'] = new_spec_ports
2、生成 deployment.yaml
2.1、yaml转json
deployment模板yaml
apiVersion: apps/v1 kind: Deployment metadata: name: ${jarName} labels: name: ${jarName} spec: selector: matchLabels: name: ${jarName} replicas: 1 template: metadata: labels: name: ${jarName} spec: containers: - name: ${jarName} image: reg.test.local/library/${jarName}:${tag} imagePullSecrets: - name: registry-secret
转成的json结构
{ "apiVersion": "apps/v1", "kind": "Deployment", "metadata": { "name": "${jarName}", "labels": { "name": "${jarName}" } }, "spec": { "selector": { "matchLabels": { "name": "${jarName}" } }, "replicas": 1, "template": { "metadata": { "labels": { "name": "${jarName}" } }, "spec": { "containers": [ { "name": "${jarName}", "image": "reg.test.local/library/${jarName}:${tag}" } ], "imagePullSecrets": [ { "name": "registry-secret" } ] } } } }
2.2、关键代码
# 传入service_name及image tag def create_deploy_yaml(service_name, tag): # 首先修改所有的${jarName} deploy_data['metadata']['name'] = service_name deploy_data['metadata']['labels']['name'] = service_name deploy_data['spec']['selector']['matchLabels']['name'] = service_name deploy_data['spec']['template']['metadata']['labels']['name'] = service_name # 由于.spec.template.spec.containers的特殊性,我们采用直接修改的方式 # 首先拼接image字段 image = "reg.test.local/library/" + service_name + ":" + tag # 创建new_containers字典列表 new_containers = [{'name': service_name, 'image': image}] deploy_data['spec']['template']['spec']['containers'] = new_containers
3、完整脚本
#!/usr/bin/python # encoding: utf-8 """ The Script for Auto Create Deployment Yaml. File: auto_create_deploy_yaml User: miaocunfa Create Date: 2020-06-10 Create Time: 17:06 """ import os from ruamel.yaml import YAML yaml = YAML() def create_service_yaml(service_name, ports): service_mould_file = "mould/info-service-mould.yaml" isServiceMould = os.path.isfile(service_mould_file) if isServiceMould: # read Service-mould yaml convert json with open(service_mould_file, encoding='utf-8') as yaml_obj: service_data = yaml.load(yaml_obj) # Update jarName service_data['metadata']['name'] = service_name service_data['metadata']['labels']['name'] = service_name service_data['spec']['selector']['name'] = service_name # Update port new_spec_ports = [] for port in ports: port = int(port) portname = 'port' + str(port) new_port = {'name': portname, 'port': port, 'targetPort': port} new_spec_ports.append(new_port) service_data['spec']['ports'] = new_spec_ports # json To service yaml save_file = tag + '/' + service_name + '_svc.yaml' with open(save_file, mode='w', encoding='utf-8') as yaml_obj: yaml.dump(service_data, yaml_obj) print(save_file + ": Success!") else: print("Service Mould File is Not Exist!") def create_deploy_yaml(service_name, tag): deploy_mould_file = "mould/info-deploy-mould.yaml" isDeployMould = os.path.isfile(deploy_mould_file) if isDeployMould: with open(deploy_mould_file, encoding='utf-8') as yaml_obj: deploy_data = yaml.load(yaml_obj) # Update jarName deploy_data['metadata']['name'] = service_name deploy_data['metadata']['labels']['name'] = service_name deploy_data['spec']['selector']['matchLabels']['name'] = service_name deploy_data['spec']['template']['metadata']['labels']['name'] = service_name # Update containers image = "reg.test.local/library/" + service_name + ":" + tag new_containers = [{'name': service_name, 'image': image}] deploy_data['spec']['template']['spec']['containers'] = new_containers # json To service yaml save_file = tag + '/' + service_name + '_deploy.yaml' with open(save_file, mode='w', encoding='utf-8') as yaml_obj: yaml.dump(deploy_data, yaml_obj) print(save_file + ": Success!") else: print("Deploy Mould File is Not Exist!") services = { 'info-gateway': ['9999'], 'info-admin': ['7777'], 'info-config': ['8888'], 'info-message-service': ['8555', '9666'], 'info-auth-service': ['8666'], 'info-scheduler-service': ['8777'], 'info-uc-service': ['8800'], 'info-ad-service': ['8801'], 'info-community-service': ['8802'], 'info-groupon-service': ['8803'], 'info-hotel-service': ['8804'], 'info-nearby-service': ['8805'], 'info-news-service': ['8806'], 'info-store-service': ['8807'], 'info-payment-service': ['8808'], 'info-agent-service': ['8809'], 'info-consumer-service': ['8090'], } prompt = "\n请输入要生成的tag: " answer = input(prompt) print("") if os.path.isdir(answer): raise SystemExit(answer + ': is Already exists!') else: tag = answer os.makedirs(tag) for service_name, service_ports in services.items(): create_service_yaml(service_name, service_ports) create_deploy_yaml(service_name, tag)
4、执行效果
➜ python3 Auto_Create_K8S_YAML.py 请输入要生成的tag: 0.0.1 0.0.1/info-gateway_svc.yaml: Success! 0.0.1/info-gateway_deploy.yaml: Success! 0.0.1/info-admin_svc.yaml: Success! 0.0.1/info-admin_deploy.yaml: Success! 0.0.1/info-config_svc.yaml: Success! 0.0.1/info-config_deploy.yaml: Success! 0.0.1/info-message-service_svc.yaml: Success! 0.0.1/info-message-service_deploy.yaml: Success! 0.0.1/info-auth-service_svc.yaml: Success! 0.0.1/info-auth-service_deploy.yaml: Success! 0.0.1/info-scheduler-service_svc.yaml: Success! 0.0.1/info-scheduler-service_deploy.yaml: Success! 0.0.1/info-uc-service_svc.yaml: Success! 0.0.1/info-uc-service_deploy.yaml: Success! 0.0.1/info-ad-service_svc.yaml: Success! 0.0.1/info-ad-service_deploy.yaml: Success! 0.0.1/info-community-service_svc.yaml: Success! 0.0.1/info-community-service_deploy.yaml: Success! 0.0.1/info-groupon-service_svc.yaml: Success! 0.0.1/info-groupon-service_deploy.yaml: Success! 0.0.1/info-hotel-service_svc.yaml: Success! 0.0.1/info-hotel-service_deploy.yaml: Success! 0.0.1/info-nearby-service_svc.yaml: Success! 0.0.1/info-nearby-service_deploy.yaml: Success! 0.0.1/info-news-service_svc.yaml: Success! 0.0.1/info-news-service_deploy.yaml: Success! 0.0.1/info-store-service_svc.yaml: Success! 0.0.1/info-store-service_deploy.yaml: Success! 0.0.1/info-payment-service_svc.yaml: Success! 0.0.1/info-payment-service_deploy.yaml: Success! 0.0.1/info-agent-service_svc.yaml: Success! 0.0.1/info-agent-service_deploy.yaml: Success! 0.0.1/info-consumer-service_svc.yaml: Success! 0.0.1/info-consumer-service_deploy.yaml: Success! ➜ ll total 12 drwxr-xr-x. 2 root root 4096 Jun 29 18:24 0.0.1 # 生成的 service yaml ➜ cat info-message-service_svc.yaml apiVersion: v1 kind: Service metadata: name: info-message-service labels: name: info-message-service version: v1 spec: ports: - name: port8555 port: 8555 targetPort: 8555 - name: port9666 port: 9666 targetPort: 9666 selector: name: info-message-service # 生成的 deployment yaml ➜ cat info-message-service_deploy.yaml apiVersion: apps/v1 kind: Deployment metadata: name: info-message-service labels: name: info-message-service spec: selector: matchLabels: name: info-message-service replicas: 2 template: metadata: labels: name: info-message-service spec: containers: - name: info-message-service image: reg.test.local/library/info-message-service:0.0.1 imagePullSecrets: - name: registry-secret
到此这篇关于使用python脚本自动生成K8S-YAML的方法示例的文章就介绍到这了,更多相关python自动生成K8S-YAML内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:
- 在centos 7中安装配置k8s集群的步骤详解
- Docker学习笔记之k8s部署方法
- Kubernetes(k8s)基础介绍
- 使用k8s部署Django项目的方法步骤
- Hyper-V下搭建K8S集群安装docker的方法步骤
- k8s部署docker容器的实现
- Docker+K8S 集群环境搭建及分布式应用部署
- 使用Rancher在K8S上部署高性能PHP应用程序的教程
- SpringBoot应用快速部署到K8S的详细教程
- k8s node节点重新加入master集群的实现
- 云原生技术kubernetes(K8S)简介
- 在K8s上部署Redis集群的方法步骤
- 基于Docker+K8S+GitLab/SVN+Jenkins+Harbor搭建持续集成交付环境的详细教程
- k8s部署redis cluster集群的实现
- 在docker中部署k8s的方法
- 打包docker镜像推送到远程服务器并部署到k8s的方法步骤
- k8s部署ingress-nginx的方法步骤
- K8S部署Kafka界面管理工具(kafkamanager)方法详解
相关文章
windows安装TensorFlow和Keras遇到的问题及其解决方法
这篇文章主要介绍了windows安装TensorFlow和Keras遇到的问题及其解决方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧2019-07-07让python同时兼容python2和python3的8个技巧分享
这篇文章主要介绍了让python同时兼容python2和python3的8个技巧分享,对代码稍微做些修改就可以很好的同时支持python2和python3的,需要的朋友可以参考下2014-07-07ipython jupyter notebook中显示图像和数学公式实例
这篇文章主要介绍了ipython jupyter notebook中显示图像和数学公式实例,具有很好的参考价值,希望对有所帮助。一起跟随小编过来看看吧2020-04-04
最新评论