Unity实现喷漆效果

 更新时间:2020年07月12日 17:19:27   作者:无迹浪子  
这篇文章主要为大家详细介绍了Unity实现喷漆效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Unity实现喷漆效果展示的具体代码,供大家参考,具体内容如下

喷漆功能

**应用场景:**如墙上的标语贴花,汽车上的喷漆等。

选择方案:

1、当然实现方法各式各异,最最最简单,也是最“不堪入目”的方法是直接给一个面片,然后获取喷漆位置,加上一个要喷漆表面法线方向的偏移,作为最终面片放置位置,当然,不要忘了设置面片的方向。这种方法虽然说简单,但是效果并不理想,会出经常现与其他物体穿插的情况,如果游戏中曲面太多,那么这个方案基本没法看。
2、对于个别特殊的需求来讲,比如说人物身上的纹身,完全可以用一个shader里实现,此方法仅限于一个贴花对应一个物体,如果是一对多的情况,请看后边这两种。
3、有一种简易的方法是用Projector,这种方法实现较为简单,不多说。
4、接下来说一种动态生成网格方案,也较为常用,接下来就详细说说这种方案。

实现思路:

喷漆的网格是根据场景中所喷位置的物体的网格动态生成的,喷漆的时候,获取规定范围内的物体,再用一个立方体(也可以用球体)去截取这些物体的Mesh,从而构造新的网格,将喷漆渲染在这个Mesh就OK了。

代码实现:

首先,我们需要一个获取规定范围内MeshRenderer的函数:

public GameObject[] GetAffectedObjects(Bounds bounds, LayerMask affectedLayers)
{
 MeshRenderer[] renderers = FindObjectsOfType<MeshRenderer>();
 List<GameObject> objects = new List<GameObject>();
 foreach (Renderer r in renderers)
 {
 if (!r.enabled) continue;
 if ((1 << r.gameObject.layer & affectedLayers.value) == 0) continue;
 if (r.GetComponent<Decal>() != null) continue;

 if (bounds.Intersects(r.bounds))
 {
 objects.Add(r.gameObject);
 }
 }
 return objects.ToArray();
}

然后拿到这些GameObject去做裁剪,裁剪函数:

public void BuildDecal(GameObject affectedObject, bool isLast)
{
 Mesh affectedMesh = affectedObject.GetComponent<MeshFilter>().sharedMesh;
 if (affectedMesh == null) return;

 //这里预存了已获取物体的vertices和triangles,减少了不必要的GC
 Vector3[] vertices = GetVertexList(affectedObject);
 int[] triangles = GetTriangleList(affectedObject);

 //目标顶点转换到当前物体的模型空间
 Matrix4x4 matrix = this.transform.worldToLocalMatrix*affectedObject.transform.localToWorldMatrix;
 //将主要计算移入异步
 Loom.RunAsync(() =>
 {
 for (int i = 0; i < triangles.Length; i += 3)
 {
 int i1 = triangles[i];
 int i2 = triangles[i + 1];
 int i3 = triangles[i + 2];

 Vector3 v1 = matrix.MultiplyPoint(vertices[i1]);
 Vector3 v2 = matrix.MultiplyPoint(vertices[i2]);
 Vector3 v3 = matrix.MultiplyPoint(vertices[i3]);

 Vector3 side1 = v2 - v1;
 Vector3 side2 = v3 - v1;
 Vector3 normal = Vector3.Cross(side1, side2).normalized;

 if (Vector3.Angle(-Vector3.forward, normal) >= maxAngle) continue;

 DecalPolygon poly = new DecalPolygon(v1, v2, v3);

 //用立方体裁剪
 poly = DecalPolygon.ClipPolygon(poly, right);
 if (poly == null) continue;
 poly = DecalPolygon.ClipPolygon(poly, left);
 if (poly == null) continue;
 poly = DecalPolygon.ClipPolygon(poly, top);
 if (poly == null) continue;
 poly = DecalPolygon.ClipPolygon(poly, bottom);
 if (poly == null) continue;
 poly = DecalPolygon.ClipPolygon(poly, front);
 if (poly == null) continue;
 poly = DecalPolygon.ClipPolygon(poly, back);
 if (poly == null) continue;

 AddPolygon(poly, normal);
 }

 if (isLast)
 {
 RenderDecal();
 }
 });
}

DecalPolygon构建了新的三角形(这里注意顶点的空间变换),然后分别用立方体的每一个面去做裁剪,转换成数学算法,其实是判面与面的关系,具体实现:

/// <summary>
/// 两面相交裁剪
/// </summary>
public static DecalPolygon ClipPolygon(DecalPolygon polygon, Plane plane)
{
 //相交为True
 bool[] positive = new bool[9];
 int positiveCount = 0;

 for (int i = 0; i < polygon.vertices.Count; i++)
 {
 positive[i] = !plane.GetSide(polygon.vertices[i]); //不在裁剪面正面,说明有相交
 if (positive[i]) positiveCount++;
 }

 if (positiveCount == 0)
 return null; //全都在裁剪面正面面,不相交
 if (positiveCount == polygon.vertices.Count) return polygon; //全都在裁剪面反面,完全相交

 DecalPolygon tempPolygon = new DecalPolygon();

 for (int i = 0; i < polygon.vertices.Count; i++)
 {
 int next = i + 1;
 next %= polygon.vertices.Count;

 if (positive[i])
 {
 tempPolygon.vertices.Add(polygon.vertices[i]);
 }

 if (positive[i] != positive[next])
 {
 Vector3 v1 = polygon.vertices[next];
 Vector3 v2 = polygon.vertices[i];

 Vector3 v = LineCast(plane, v1, v2);
 tempPolygon.vertices.Add(v);
 }
 }

 return tempPolygon;
}

OK,到这里已经为新的Mesh准备好了所有的数据,接下来将计算好的数据移步到主线程做渲染:

public void RenderDecal()
{
 //主线程渲染
 Loom.QueueOnMainThread(() =>
 {
 if (sprite == null || Renderer == null||filter==null)
  {
   return;
  }
  //生成uv信息
  GenerateTexCoords(0, sprite);
  //距离偏移
 Push(pushDistance);

 Mesh mesh = CreateMesh();
 if (mesh != null) {
 mesh.name = "DecalMesh";
 filter.mesh = mesh;
 Renderer.material = material;
 Renderer.enabled = true;
 }
 });
}

这样,一个喷漆功能就做好了,有几点需要注意是的是:

1.GC的控制

示例:Vector3[] vertices = mesh.vertices;
注意这里不是简单的内存引用,而是会申请新的内存,所以这样的临时变量会造成GC,当物体的顶点上十几K,甚至几十K的时候,这样的GC是吃不消的!为了尽量避免这样的情况,可以做一次预存处理,对没有检测过物体的顶点和三角形数据进行保存,下次用的时候直接取,从而取代mesh.vertices;

2.计算量的问题

还是出于性能的考虑,当与之裁剪的Mesh顶点数太多,在主线程for循环几十K次,不出意外PC端也会卡顿,所以异步是一个较好的选择。复杂的裁剪计算交给其他线程,计算好主线程直接拿数据做渲染;

3.效果问题

由于新生成的喷漆Mesh是由原有物体的mesh裁剪所得的,而这两个Mesh位置是重叠在一起的,两个完全重叠的面,如果其他因变量也相同的情况下,让计算机渲染,计算机也不知道该先渲染哪个,这样就出现z-fighting的问题。所以加一个Push()方法,将新Mesh的顶点沿当前顶点的法线方向挤出一点距离,这样就实现了一个喷漆功能。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • C#使用Automation实现控制自动拨打接听电话

    C#使用Automation实现控制自动拨打接听电话

    这篇文章主要为大家详细介绍了C#如何使用Automation实现控制自动拨打接听电话,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2024-02-02
  • C#调用Python模块的方法

    C#调用Python模块的方法

    这篇文章主要为大家详细介绍了C#调用Python模块的方法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-05-05
  • C# 9.0新特性——只初始化设置器

    C# 9.0新特性——只初始化设置器

    这篇文章主要介绍了C# 9.0新特性——只初始化设置器的相关资料,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-11-11
  • 深入DropDownList用法的一些学习总结分析

    深入DropDownList用法的一些学习总结分析

    本篇文章是对DropDownList的用法进行了详细的分析介绍,需要的朋友参考下
    2013-06-06
  • c#之OpenFileDialog解读(打开文件对话框)

    c#之OpenFileDialog解读(打开文件对话框)

    这篇文章主要介绍了c#之OpenFileDialog(打开文件对话框),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-07-07
  • C#中ManualResetEvent用法详解

    C#中ManualResetEvent用法详解

    这篇文章主要为大家详细介绍了C#中ManualResetEvent用法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-05-05
  • C#中Dictionary与List的用法区别以及联系详解

    C#中Dictionary与List的用法区别以及联系详解

    List和Dictionary想必是我们平常用到最多的C#容器了,他们使用起来都很简单,这篇文章主要给大家介绍了关于C#中Dictionary与List的用法区别以及联系的相关资料,需要的朋友可以参考下
    2023-11-11
  • 深入理解C#中的Delegate

    深入理解C#中的Delegate

    委托是一种安全地封装方法的类型,它与 C 和 C++ 中的函数指针类似。与 C 中的函数指针不同,委托是面向对象的、类型安全的和保险的。委托的类型由委托的名称定义
    2016-07-07
  • c# 泛型类型参数与约束的深入分析

    c# 泛型类型参数与约束的深入分析

    本篇文章是对c#中泛型类型参数与约束进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • 如何利用现代化C#语法简化代码

    如何利用现代化C#语法简化代码

    这篇文章主要给大家介绍了关于如何利用现代化C#语法简化代码的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04

最新评论