Python如何读取、写入CSV数据

 更新时间:2020年07月28日 09:08:23   作者:看云  
这篇文章主要介绍了Python如何读写CSV数据,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下

问题

你想读写一个CSV格式的文件。

解决方案

对于大多数的CSV格式的数据读写问题,都可以使用 csv 库。、例如,假设你在一个名叫stocks.csv文件中有一些股票市场数据,就像这样:

下面向你展示如何将这些数据读取为一个元组的序列:

import csv
with open('stocks.csv') as f:
 f_csv = csv.reader(f)
 headers = next(f_csv)
 for row in f_csv:
  # Process row
  ...

在上面的代码中,row 会是一个元组。因此,为了访问某个字段,你需要使用下标,如row[0]访问Symbol,row[4]访问Change。

由于这种下标访问通常会引起混淆,你可以考虑使用命名元组。例如:

from collections import namedtuple
with open('stock.csv') as f:
 f_csv = csv.reader(f)
 headings = next(f_csv)
 Row = namedtuple('Row', headings)
 for r in f_csv:
  row = Row(*r)
  # Process row
  ...

它允许你使用列名如 row.Symbol 和 row.Change 代替下标访问。需要注意的是这个只有在列名是合法的Python标识符的时候才生效。如果不是的话,你可能需要修改下原始的列名(如将非标识符字符替换成下划线之类的)。

另外一个选择就是将数据读取到一个字典序列中去。可以这样做:

import csv
with open('stocks.csv') as f:
 f_csv = csv.DictReader(f)
 for row in f_csv:
  # process row
  ...

在这个版本中,你可以使用列名去访问每一行的数据了。比如,row['Symbol'] 或者 row['Change'] 。

为了写入CSV数据,你仍然可以使用csv模块,不过这时候先创建一个 writer 对象。例如;

headers = ['Symbol','Price','Date','Time','Change','Volume']
rows = [('AA', 39.48, '6/11/2007', '9:36am', -0.18, 181800),
   ('AIG', 71.38, '6/11/2007', '9:36am', -0.15, 195500),
   ('AXP', 62.58, '6/11/2007', '9:36am', -0.46, 935000),
  ]

with open('stocks.csv','w') as f:
 f_csv = csv.writer(f)
 f_csv.writerow(headers)
 f_csv.writerows(rows)

如果你有一个字典序列的数据,可以像这样做:

headers = ['Symbol', 'Price', 'Date', 'Time', 'Change', 'Volume']
rows = [{'Symbol':'AA', 'Price':39.48, 'Date':'6/11/2007',
  'Time':'9:36am', 'Change':-0.18, 'Volume':181800},
  {'Symbol':'AIG', 'Price': 71.38, 'Date':'6/11/2007',
  'Time':'9:36am', 'Change':-0.15, 'Volume': 195500},
  {'Symbol':'AXP', 'Price': 62.58, 'Date':'6/11/2007',
  'Time':'9:36am', 'Change':-0.46, 'Volume': 935000},
  ]

with open('stocks.csv','w') as f:
 f_csv = csv.DictWriter(f, headers)
 f_csv.writeheader()
 f_csv.writerows(rows)

讨论

你应该总是优先选择csv模块分割或解析CSV数据。例如,你可能会像编写类似下面这样的代码:

with open('stocks.csv') as f:
for line in f:
 row = line.split(',')
 # process row
 ...

使用这种方式的一个缺点就是你仍然需要去处理一些棘手的细节问题。比如,如果某些字段值被引号包围,你不得不去除这些引号。另外,如果一个被引号包围的字段碰巧含有一个逗号,那么程序就会因为产生一个错误大小的行而出错。

默认情况下,csv 库可识别Microsoft Excel所使用的CSV编码规则。这或许也是最常见的形式,并且也会给你带来最好的兼容性。然而,如果你查看csv的文档,就会发现有很多种方法将它应用到其他编码格式上(如修改分割字符等)。例如,如果你想读取以tab分割的数据,可以这样做:

# Example of reading tab-separated values
with open('stock.tsv') as f:
 f_tsv = csv.reader(f, delimiter='\t')
 for row in f_tsv:
  # Process row
  ...

如果你正在读取CSV数据并将它们转换为命名元组,需要注意对列名进行合法性认证。例如,一个CSV格式文件有一个包含非法标识符的列头行,类似下面这样:

这样最终会导致在创建一个命名元组时产生一个 ValueError 异常而失败。为了解决这问题,你可能不得不先去修正列标题。例如,可以像下面这样在非法标识符上使用一个正则表达式替换:

import re
with open('stock.csv') as f:
 f_csv = csv.reader(f)
 headers = [ re.sub('[^a-zA-Z_]', '_', h) for h in next(f_csv) ]
 Row = namedtuple('Row', headers)
 for r in f_csv:
  row = Row(*r)
  # Process row
  ...

还有重要的一点需要强调的是,csv产生的数据都是字符串类型的,它不会做任何其他类型的转换。如果你需要做这样的类型转换,你必须自己手动去实现。下面是一个在CSV数据上执行其他类型转换的例子:

col_types = [str, float, str, str, float, int]
with open('stocks.csv') as f:
 f_csv = csv.reader(f)
 headers = next(f_csv)
 for row in f_csv:
  # Apply conversions to the row items
  row = tuple(convert(value) for convert, value in zip(col_types, row))
  ...

另外,下面是一个转换字典中特定字段的例子:

print('Reading as dicts with type conversion')
field_types = [ ('Price', float),
    ('Change', float),
    ('Volume', int) ]

with open('stocks.csv') as f:
 for row in csv.DictReader(f):
  row.update((key, conversion(row[key]))
    for key, conversion in field_types)
  print(row)

通常来讲,你可能并不想过多去考虑这些转换问题。在实际情况中,CSV文件都或多或少有些缺失的数据,被破坏的数据以及其它一些让转换失败的问题。因此,除非你的数据确实有保障是准确无误的,否则你必须考虑这些问题(你可能需要增加合适的错误处理机制)。

最后,如果你读取CSV数据的目的是做数据分析和统计的话,你可能需要看一看 Pandas 包。Pandas 包含了一个非常方便的函数叫 pandas.read_csv() ,它可以加载CSV数据到一个 DataFrame 对象中去。然后利用这个对象你就可以生成各种形式的统计、过滤数据以及执行其他高级操作了。

以上就是Python如何读写CSV数据的详细内容,更多关于Python读写CSV数据的资料请关注脚本之家其它相关文章!

相关文章

  • python 实现银行卡号查询银行名称和简称功能

    python 实现银行卡号查询银行名称和简称功能

    这篇文章主要介绍了python 实现银行卡号查询银行名称和简称功能,本文通过实例代码补充介绍了基于PyQT5+OpenCv实现银行卡号识别功能,感兴趣的朋友一起看看吧
    2023-11-11
  • django的安装和创建应用过程详解

    django的安装和创建应用过程详解

    这篇文章主要介绍了django的安装和创建应用,本文通过图文并茂的形式给大家介绍的非常详细,需要的朋友可以参考下
    2023-07-07
  • np.meshgrid中的indexing参数问题解决

    np.meshgrid中的indexing参数问题解决

    本文主要介绍了np.meshgrid中的indexing参数问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python执行数据库的查询操作实例讲解

    python执行数据库的查询操作实例讲解

    在本篇文章里小编给大家整理了一篇关于python执行数据库的查询操作实例讲解内容,有需要的朋友们可以参考学习下。
    2021-10-10
  • Python报错ValueError: cannot reindex from a duplicate axis的解决方法

    Python报错ValueError: cannot reindex from 

    当处理Pandas数据框(DataFrame)时,你是否遇到过ValueError: cannot reindex from a duplicate axis的报错?这个问题通常发生在尝试对DataFrame进行重索引时,如果索引有重复值,就会触发这个错误,下面,我们将探讨这个问题并提供解决方法
    2024-09-09
  • Python库AutoTS一行代码得到最强时序基线

    Python库AutoTS一行代码得到最强时序基线

    AutoTS它是一个用于自动时间序列分析的 Python 库。AutoTS 允许我们用一行代码训练多个时间序列模型,以便我们可以选择最适合的模型,今天介绍一种非常霸道的工具,融合了自动化机器学习技术开发的AutoTS
    2022-03-03
  • Eclipse和PyDev搭建完美Python开发环境教程(Windows篇)

    Eclipse和PyDev搭建完美Python开发环境教程(Windows篇)

    这篇文章主要介绍了Eclipse和PyDev搭建完美Python开发环境教程(Windows篇),具有一定的参考价值,感兴趣的小伙伴可以了解一下。
    2016-11-11
  • 利用numpy和pandas处理csv文件中的时间方法

    利用numpy和pandas处理csv文件中的时间方法

    下面小编就为大家分享一篇利用numpy和pandas处理csv文件中的时间方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 一文带你搞懂Python中的数据容器

    一文带你搞懂Python中的数据容器

    这篇文章主要为大家详细介绍了Python中数据容器的相关资料,文中的示例代码讲解详细,对我们学习Python有一定的帮助,感兴趣的可以了解一下
    2022-11-11
  • python的urllib.parse用法及说明

    python的urllib.parse用法及说明

    这篇文章主要介绍了python的urllib.parse用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09

最新评论