python+requests接口自动化框架的实现

 更新时间:2020年08月31日 09:26:13   作者:风声~~  
这篇文章主要介绍了python+requests接口自动化框架的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

为什么要做接口自动化框架

1、业务与配置的分离

2、数据与程序的分离;数据的变更不影响程序

3、有日志功能,实现无人值守

4、自动发送测试报告

5、不懂编程的测试人员也可以进行测试

正常接口测试的流程是什么?

确定接口测试使用的工具----->配置需要的接口参数----->进行测试----->检查测试结果----->生成测试报告

测试的工具:python+requests

接口测试用例:excel

一、接口框架如下:

1、action包:用来存放关键字函数

2、config包:用来存放配置文件

3、TestData:用来存放测试数据,excel表

4、Log包:用来存放日志文件

5、utils包:用来存放公共的类

6、运行主程序interface_auto_test.py

7、Readme.txt:告诉团队组员使用改框架需要注意的地方

二、接口的数据规范设计---Case设计

一个sheet对应数据库里面一张表

APIsheet存放
编号;从1开始
接口的名称(APIName);
请求的url(RequestUrl);
请求的方法(RequestMethod);
传参的方式(paramsType):post/get请求方法不一样
用例说明(APITestCase)
是否执行(Active)部分接口已测通,下次不用测试,直接把这里设置成N,跳过此接口

post与get的区别

查看post详情

post请求参数一般是json串,参数放在from表单里面;参数一般不可见,相对来说安全性高些

查看get详情

get请求参数一般直接放在url里面

2.1注册接口用例

RequestData:请求的数据
(开发制定的传参方式)
RelyData:数据依赖
ResponseCode:响应code
ResponseData:响应数据
DataStore:存储的依赖数据;如果存在数据库里面,在表里增加一个字段用来存依赖的数据
(存储的方式是编写接口自动化的人员来设定的存储方式)
CheckPoint:检查点
Active:是否执行
Status:执行用例的状态,方便查看用例是否执行成功
ErrorInfo:case运行失败,失败的错误信息;eg:是也本身的原因还是case设置失败,还是其他原因

2.2登录接口用例

RequestData:请求的数据
(开发制定的传参方式)
RelyData:数据依赖
(存储的方式是编写接口自动化的人员来设定的存储方式)
ResponseCode:响应code
ResponseData:响应数据
DataStore:存储的依赖数据;如果存在数据库里面,在表里增加一个字段用来存依赖的数据
(存储的方式是编写接口自动化的人员来设定的存储方式)
CheckPoint:检查点
Active:是否执行
Status:执行用例的状态,方便查看用例是否执行成功
ErrorInfo:case运行失败,失败的错误信息;eg:是也本身的原因还是case设置失败,还是其他原因

重点说明下RelyData:数据依赖
采取的是字典:key:value来存储数据格式;
{"request":{"username":"register->1","password":"register->1"},"response":{"code":"register->1"}}

格式化之后:

{
  "request":{
    "username":"register->1",
    "password":"register->1"
  },
  "response":{
    "code":"register->1"
  }
}

三、创建utils包:用来存放公共的类

3.1 ParseExcel.py 操作封装excel的类(ParseExcel.py)

#encoding=utf-8
import openpyxl
from openpyxl.styles import Border, Side, Font
import time

class ParseExcel(object):

  def __init__(self):
    self.workbook = None
    self.excelFile = None
    self.font = Font(color = None) # 设置字体的颜色
    # 颜色对应的RGB值
    self.RGBDict = {'red': 'FFFF3030', 'green': 'FF008B00'}

  def loadWorkBook(self, excelPathAndName):
    # 将excel文件加载到内存,并获取其workbook对象
    try:
      self.workbook = openpyxl.load_workbook(excelPathAndName)
    except Exception as err:
      raise err
    self.excelFile = excelPathAndName
    return self.workbook

  def getSheetByName(self, sheetName):
    # 根据sheet名获取该sheet对象
    try:
      # sheet = self.workbook.get_sheet_by_name(sheetName)
      sheet = self.workbook[sheetName]
      return sheet
    except Exception as err:
      raise err

  def getSheetByIndex(self, sheetIndex):
    # 根据sheet的索引号获取该sheet对象
    try:
      # sheetname = self.workbook.get_sheet_names()[sheetIndex]
      sheetname = self.workbook.sheetnames[sheetIndex]
    except Exception as err:
      raise err
    # sheet = self.workbook.get_sheet_by_name(sheetname)
    sheet = self.workbook[sheetname]
    return sheet

  def getRowsNumber(self, sheet):
    # 获取sheet中有数据区域的结束行号
    return sheet.max_row

  def getColsNumber(self, sheet):
    # 获取sheet中有数据区域的结束列号
    return sheet.max_column

  def getStartRowNumber(self, sheet):
    # 获取sheet中有数据区域的开始的行号
    return sheet.min_row

  def getStartColNumber(self, sheet):
    # 获取sheet中有数据区域的开始的列号
    return sheet.min_column

  def getRow(self, sheet, rowNo):
    # 获取sheet中某一行,返回的是这一行所有的数据内容组成的tuple,
    # 下标从1开始,sheet.rows[1]表示第一行
    try:
      rows = []
      for row in sheet.iter_rows():
        rows.append(row)
      return rows[rowNo - 1]
    except Exception as err:
      raise err

  def getColumn(self, sheet, colNo):
    # 获取sheet中某一列,返回的是这一列所有的数据内容组成tuple,
    # 下标从1开始,sheet.columns[1]表示第一列
    try:
      cols = []
      for col in sheet.iter_cols():
        cols.append(col)
      return cols[colNo - 1]
    except Exception as err:
      raise err

  def getCellOfValue(self, sheet, coordinate = None,
            rowNo = None, colsNo = None):
    # 根据单元格所在的位置索引获取该单元格中的值,下标从1开始,
    # sheet.cell(row = 1, column = 1).value,
    # 表示excel中第一行第一列的值
    if coordinate != None:
      try:
        return sheet[coordinate]
      except Exception as err:
        raise err
    elif coordinate is None and rowNo is not None and \
            colsNo is not None:
      try:
        return sheet.cell(row = rowNo, column = colsNo).value
      except Exception as err:
        raise err
    else:
      raise Exception("Insufficient Coordinates of cell !")

  def getCellOfObject(self, sheet, coordinate = None,
            rowNo = None, colsNo = None):
    # 获取某个单元格的对象,可以根据单元格所在位置的数字索引,
    # 也可以直接根据excel中单元格的编码及坐标
    # 如getCellObject(sheet, coordinate = 'A1') or
    # getCellObject(sheet, rowNo = 1, colsNo = 2)
    if coordinate != None:
      try:
        # return sheet.cell(coordinate = coordinate)
        return sheet[coordinate]
      except Exception as err:
        raise err
    elif coordinate == None and rowNo is not None and \
            colsNo is not None:
      try:
        return sheet.cell(row = rowNo,column = colsNo)
      except Exception as err:
        raise err
    else:
      raise Exception("Insufficient Coordinates of cell !")

  def writeCell(self, sheet, content, coordinate = None,
    rowNo = None, colsNo = None, style = None):
    #根据单元格在excel中的编码坐标或者数字索引坐标向单元格中写入数据,
    # 下标从1开始,参style表示字体的颜色的名字,比如red,green
    if coordinate is not None:
      try:
        # sheet.cell(coordinate = coordinate).value = content
        sheet[coordinate] = content
        if style is not None:
          sheet[coordinate].\
            font = Font(color = self.RGBDict[style])
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    elif coordinate == None and rowNo is not None and \
            colsNo is not None:
      try:
        sheet.cell(row = rowNo,column = colsNo).value = content
        if style:
          sheet.cell(row = rowNo,column = colsNo).\
            font = Font(color = self.RGBDict[style])
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    else:
      raise Exception("Insufficient Coordinates of cell !")

  def writeCellCurrentTime(self, sheet, coordinate = None,
        rowNo = None, colsNo = None):
    # 写入当前的时间,下标从1开始
    now = int(time.time()) #显示为时间戳
    timeArray = time.localtime(now)
    currentTime = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)
    if coordinate is not None:
      try:
        sheet.cell(coordinate = coordinate).value = currentTime
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    elif coordinate == None and rowNo is not None \
        and colsNo is not None:
      try:
        sheet.cell(row = rowNo, column = colsNo
            ).value = currentTime
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    else:
      raise Exception("Insufficient Coordinates of cell !")

if __name__ == '__main__':
  # 测试代码
  pe = ParseExcel()
  pe.loadWorkBook(r'D:\ProgramSourceCode\Python Source Code\WorkSpace\InterfaceFrame2018\inter_test_data.xlsx')
  sheetObj = pe.getSheetByName(u"API")
  print("通过名称获取sheet对象的名字:", sheetObj.title)
  # print help(sheetObj.rows)
  print("通过index序号获取sheet对象的名字:", pe.getSheetByIndex(0).title)
  sheet = pe.getSheetByIndex(0)
  print(type(sheet))
  print(pe.getRowsNumber(sheet)) #获取最大行号
  print(pe.getColsNumber(sheet)) #获取最大列号
  rows = pe.getRow(sheet, 1) #获取第一行
  for i in rows:
    print(i.value)
  # # 获取第一行第一列单元格内容
  # print pe.getCellOfValue(sheet, rowNo = 1, colsNo = 1)
  # pe.writeCell(sheet, u'我爱祖国', rowNo = 10, colsNo = 10)
  # pe.writeCellCurrentTime(sheet, rowNo = 10, colsNo = 11)

3.2 封装get/post请求(HttpClient.py)

import requests
import json

class HttpClient(object):
  def __init__(self):
    pass

  def request(self, requestMethod, requestUrl, paramsType,
        requestData, headers =None, **kwargs):
    if requestMethod == "post":
      print("---", requestData, type(requestData))
      if paramsType == "form":
        response = self.__post(url = requestUrl, data = json.dumps(eval(requestData)),
                 headers = headers, **kwargs)
        return response
      elif paramsType == "json":
        response = self.__post(url = requestUrl, json = json.dumps(eval(requestData)),
                 headers = headers, **kwargs)
        return response
    elif requestMethod == "get":
      request_url = requestUrl
      if paramsType == "url":
        request_url = "%s%s" %(requestUrl, requestData)
      response = self.__get(url = request_url, params = requestData, **kwargs)
      return response

  def __post(self, url, data = None, json = None, headers=None,**kwargs):
    print("----")
    response = requests.post(url=url, data = data, json=json, headers=headers)
    return response

  def __get(self, url, params = None, **kwargs):
    response = requests.get(url, params = params, **kwargs)
    return response

if __name__ == "__main__":
  hc = HttpClient()
  res = hc.request("get", "http://39.106.41.11:8080/getBlogContent/", "url",'2')
  print(res.json())

3.3 封装MD5(md5_encrypt)

import hashlib

def md5_encrypt(text):
  m5 = hashlib.md5()
  m5.update(text.encode("utf-8"))
  value = m5.hexdigest()
  return value

if __name__ == "__main__":
  print(md5_encrypt("sfwe"))

3.4 封装Log

import logging
import logging.config
from config.public_data import baseDir

# 读取日志配置文件
logging.config.fileConfig(baseDir + "\config\Logger.conf")
# 选择一个日志格式
logger = logging.getLogger("example02")#或者example01

def debug(message):
  # 定义dubug级别日志打印方法
  logger.debug(message)

def info(message):
  # 定义info级别日志打印方法
  logger.info(message)

def warning(message):
  # 定义warning级别日志打印方法
  logger.warning(message)

3.5 封装发送Email类

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header
from ProjVar.var import *

import os
import smtplib
from email import encoders
from email.mime.base import MIMEBase
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header
from email.utils import formataddr

def send_mail():
  mail_host="smtp.126.com" #设置服务器
  mail_user="testman1980"  #用户名
  mail_pass="wulaoshi1980"  #口令
  sender = 'testman1980@126.com'
  receivers = ['2055739@qq.com',"testman1980@126.com"] # 接收邮件,可设置为你的QQ邮箱或者其他邮箱
  # 创建一个带附件的实例
  message = MIMEMultipart()
  message['From'] = formataddr(["光荣之路吴老师", "testman1980@126.com"])
  message['To'] = ','.join(receivers)
  subject = '自动化测试执行报告'
  message['Subject'] = Header(subject, 'utf-8')
  message["Accept-Language"]="zh-CN"
  message["Accept-Charset"]="ISO-8859-1,utf-8,gbk"
  # 邮件正文内容
  message.attach(MIMEText('最新执行的自动化测试报告,请参阅附件内容!', 'plain', 'utf-8'))

  # 构造附件1,传送测试结果的excel文件
  att = MIMEBase('application', 'octet-stream')
  att.set_payload(open(ProjDirPath+"\\testdata\\testdata.xlsx", 'rb').read())
  att.add_header('Content-Disposition', 'attachment', filename=('gbk', '', "自动化测试报告.xlsx"))
  encoders.encode_base64(att)
  message.attach(att)
  """
  # 构造附件2,传送当前目录下的 runoob.txt 文件
  att2 = MIMEText(open('e:\\a.py','rb').read(), 'base64', 'utf-8')
  att2["Content-Type"] = 'application/octet-stream'
  att2["Content-Disposition"] = 'attachment; filename="a.py"'
  message.attach(att2)
  """
  try:
    smtpObj = smtplib.SMTP(mail_host)
    smtpObj.login(mail_user, mail_pass)
    smtpObj.sendmail(sender, receivers, message.as_string())
    print("邮件发送成功")
  except smtplib.SMTPException as e:
    print("Error: 无法发送邮件", e)

if __name__ == "__main__":
  send_mail()

四、 创建config包 用来存放公共的参数、配置文件、长时间不变的变量值

创建public_data.py

import os
# 整个项目的根目录绝对路劲
baseDir = os.path.dirname(os.path.dirname(__file__))

# 获取测试数据文件的绝对路径
file_path = baseDir + "/TestData/inter_test_data.xlsx"

API_apiName = 2
API_requestUrl = 3
API_requestMothod = 4
API_paramsType = 5
API_apiTestCaseFileName = 6
API_active = 7

CASE_requestData = 1
CASE_relyData = 2
CASE_responseCode = 3
CASE_responseData = 4
CASE_dataStore = 5
CASE_checkPoint = 6
CASE_active = 7
CASE_status = 8
CASE_errorInfo = 9

# 存储请求参数里面依赖的数据
REQUEST_DATA = {}

# 存储响应对象中的依赖数据
RESPONSE_DATA = {}

if __name__=="__main__":
  print(file_path)
  print(baseDir)

五、创建TestData目录,用来存放测试文件

inter_test_data.xlsx

六、创建action包,用来存放关键字函数

6.1 解决数据依赖 (GetRely.py)

from config.public_data import REQUEST_DATA, RESPONSE_DATA
from utils.md5_encrypt import md5_encrypt

REQUEST_DATA = {"用户注册":{"1":{"username":"zhangsan", "password":"dfsdf23"},
            "headers":{"cookie":"asdfwerw"}}}
RESPONSE_DATA = {"用户注册":{"1":{"code":"00"}, "headers":{"age":2342}}}

class GetRely(object):
  def __init__(self):
    pass

  @classmethod
  def get(self, dataSource, relyData, headSource = {}):
    print(type(dataSource))
    print(dataSource)
    data = dataSource.copy()
    for key, value in relyData.items():
      if key == "request":
        #说明应该去REQUEST_DATA中获取
        for k, v in value.items():
          interfaceName, case_idx = v.split("->")
          val = REQUEST_DATA[interfaceName][case_idx][k]
          if k == "password":
            data[k] = md5_encrypt(val)
          else:
            data[k] = val
      elif key == "response":
        # 应该去RESPONSE_DATA中获取
        for k, v in value.items():
          interfaceName, case_idx = v.split("->")
          data[k] = RESPONSE_DATA[interfaceName][case_idx][k]
      elif key == "headers":
        if headSource:
          for key, value in value.items():
            if key == "request":
              for k, v in value.items():
                for i in v:
                  headSource[i] = REQUEST_DATA[k]["headers"][i]
            elif key == "response":
              for i, val in value.items():
                for j in val:
                  headSource[j] = RESPONSE_DATA[i]["headers"][j]
    return "%s" %data

if __name__ == "__main__":
  s = {"username": "", "password": "","code":""}
  h = {"cookie":"123", "age":332}
  rely = {"request": {"username": "用户注册->1", "password": "用户注册->1"},
      "response":{"code":"用户注册->1"},
      "headers":{"request":{"用户注册":["cookie"]},"response":{"用户注册":["age"]}}
      }
  print(GetRely.get(s, rely, h))

6.2 解决数据存储(RelyDataStore.py)

from config.public_data import RESPONSE_DATA, REQUEST_DATA

class RelyDataStore(object):
  def __init__(self):
    pass

  @classmethod
  def do(cls, storePoint, apiName, caseId, request_source = {}, response_source = {}, req_headers={}, res_headers = {}):
    for key, value in storePoint.items():
      if key == "request":
        # 说明需要存储的依赖数据来自请求参数,应该将数据存储到REQUEST_DATA
        for i in value:
          if i in request_source:
            val = request_source[i]
            if apiName not in REQUEST_DATA:
              # 说明存储数据的结构还未生成,需要指明数据存储结构
              REQUEST_DATA[apiName]={str(caseId): {i: val}}
            else:
              #说明存储数据结构中最外层结构已存在
              if str(caseId) in REQUEST_DATA[apiName]:
                REQUEST_DATA[apiName][str(caseId)][i] = val
              else:
                # 说明内层结构不完整,需要指明完整的结构
                REQUEST_DATA[apiName][str(caseId)] = {i: val}
          else:
            print("请求参数中不存在字段" + i)
      elif key == "response":
        #说明需要存储的依赖数据来自接口的响应body,应该将数据存储到RESPONSE_DATA
        for j in value:
          if j in response_source:
            val = response_source[j]
            if apiName not in RESPONSE_DATA:
              # 说明存储数据的结构还未生成,需要指明数据存储结构
              RESPONSE_DATA[apiName]={str(caseId): {j: val}}
            else:
              #说明存储数据结构中最外层结构已存在
              if str(caseId) in RESPONSE_DATA[apiName]:
                RESPONSE_DATA[apiName][str(caseId)][j] = val
              else:
                # 说明内层结构不完整,需要指明完整的结构
                RESPONSE_DATA[apiName][str(caseId)] = {j: val}
          else:
            print("接口的响应body中不存在字段" + j)
      elif key == "headers":
        for k, v in value.items():
          if k == "request":
            # 说明需要往REQUEST_DATA变量中写入存储数据
            for item in v:
              if item in req_headers:
                header = req_headers[item]
                if "headers" in REQUEST_DATA[apiName]:
                  REQUEST_DATA[apiName]["headers"][item] = header
                else:
                  REQUEST_DATA[apiName]["headers"] = {item: header}
          elif k == "response":
            # 说明需要往RESPONSE_DATA变量中写入存储数据
            for it in v:
              if it in res_headers:
                header = res_headers[it]
                if "headers" in RESPONSE_DATA[apiName]:
                  RESPONSE_DATA[apiName]["headers"][it] = header
                else:
                  RESPONSE_DATA[apiName]["headers"] = {item: header}
    print(REQUEST_DATA)
    print(RESPONSE_DATA)


if __name__ == "__main__":
  r = {"username": "srwcx01", "password": "wcx123wac1", "email": "wcx@qq.com"}
  req_h = {"cookie":"csdfw23"}
  res_h = {"age":597232}
  s = {"request": ["username", "password"], "response": ["userid"],"headers":{"request":["cookie"],
    "response":["age"]}}
  res = {"userid": 12, "code": "00"}
  RelyDataStore.do(s, "register", 1, r, res, req_headers=req_h, res_headers=res_h)
  print(REQUEST_DATA)
  print(RESPONSE_DATA)

6.3 校验数据结果(CheckResult.py)

import re

class CheckResult(object):
  def __init__(self):
    pass

  @classmethod
  def check(self, responseObj, checkPoint):
    responseBody = responseObj.json()
    # responseBody = {"code": "", "userid": 12, "id": "12"}
    errorKey = {}
    for key, value in checkPoint.items():
      if key in responseBody:
        if isinstance(value, (str, int)):
          # 等值校验
          if responseBody[key] != value:
            errorKey[key] = responseBody[key]
        elif isinstance(value, dict):
          sourceData = responseBody[key]
          if "value" in value:
            # 模糊匹配校验
            regStr = value["value"]
            rg = re.match(regStr, "%s" %sourceData)
            if not rg:
              errorKey[key] = sourceData
          elif "type" in value:
            # 数据类型校验
            typeS = value["type"]
            if typeS == "N":
              # 说明是整形校验
              if not isinstance(sourceData, int):
                errorKey[key] = sourceData
      else:
        errorKey[key] = "[%s] not exist" %key
    return errorKey

if __name__ == "__main__":
  r = {"code": "00", "userid": 12, "id": 12}
  c = {"code": "00", "userid": {"type": "N"}, "id": {"value": "\d+"}}
  print(CheckResult.check(r, c))

6.4 往excel里面写结果

from config.public_data import *

def write_result(wbObj, sheetObj, responseData, errorKey, rowNum):
  try:
    # 写响应body
    wbObj.writeCell(sheetObj, content="%s" %responseData,
            rowNo = rowNum, colsNo=CASE_responseData)
    # 写校验结果状态及错误信息
    if errorKey:
      wbObj.writeCell(sheetObj, content="%s" %errorKey,
            rowNo=rowNum, colsNo=CASE_errorInfo)
      wbObj.writeCell(sheetObj, content="faild",
              rowNo=rowNum, colsNo=CASE_status, style="red")
    else:
      wbObj.writeCell(sheetObj, content="pass",
              rowNo=rowNum, colsNo=CASE_status, style="green")
  except Exception as err:
    raise err

七、创建Log目录用来存放日志

八、主函数

#encoding=utf-8
import requests
import json
from action.get_rely import GetRely
from config.public_data import *
from utils.ParseExcel import ParseExcel
from utils.HttpClient import HttpClient
from action.data_store import RelyDataStore
from action.check_result import CheckResult
from action.write_result import write_result
from utils.Log import *

def main():
  parseE = ParseExcel()
  parseE.loadWorkBook(file_path)
  sheetObj = parseE.getSheetByName("API")
  activeList = parseE.getColumn(sheetObj, API_active)
  for idx, cell in enumerate(activeList[1:], 2):
    if cell.value == "y":
      #需要被执行
      RowObj = parseE.getRow(sheetObj, idx)
      apiName = RowObj[API_apiName -1].value
      requestUrl = RowObj[API_requestUrl - 1].value
      requestMethod = RowObj[API_requestMothod - 1].value
      paramsType = RowObj[API_paramsType - 1].value
      apiTestCaseFileName = RowObj[API_apiTestCaseFileName - 1].value

      # 下一步读取用例sheet表,准备执行测试用例
      caseSheetObj = parseE.getSheetByName(apiTestCaseFileName)
      caseActiveObj = parseE.getColumn(caseSheetObj, CASE_active)
      for c_idx, col in enumerate(caseActiveObj[1:], 2):
        if col.value == "y":
          #需要执行的用例
          caseRowObj = parseE.getRow(caseSheetObj, c_idx)
          requestData = caseRowObj[CASE_requestData - 1].value
          relyData = caseRowObj[CASE_relyData - 1].value
          responseCode = caseRowObj[CASE_responseCode - 1].value
          responseData = caseRowObj[CASE_responseData - 1].value
          dataStore = caseRowObj[CASE_dataStore -1].value
          checkPoint = caseRowObj[CASE_checkPoint - 1].value

          #发送接口请求之前需要做一下数据依赖的处理
          if relyData:
            logging.info("处理第%s个接口的第%s条用例的数据依赖!")
            requestData = GetRely.get(eval(requestData), eval(relyData))
          httpC = HttpClient()
          response = httpC.request(requestMethod=requestMethod,
                       requestData=requestData,
                       requestUrl=requestUrl,
                       paramsType=paramsType
                       )
          # 获取到响应结果后,接下来进行数据依赖存储逻辑实现
          if response.status_code == 200:
            responseData = response.json()
            # 进行依赖数据存储
            if dataStore:
              RelyDataStore.do(eval(dataStore), apiName, c_idx - 1, eval(requestData), responseData)
            # 接下来就是校验结果
            else:
              logging.info("接口【%s】的第【%s】条用例,不需要进行依赖数据存储!" %(apiName, c_idx))
            if checkPoint:
              errorKey = CheckResult.check(response, eval(checkPoint))
              write_result(parseE, caseSheetObj, responseData, errorKey, c_idx)
          else:
            logging.info("接口【%s】的第【%s】条用例,执行失败,接口协议code非200!" %(apiName, c_idx))
        else:
          logging.info("第%s个接口的第%s条用例,被忽略执行!" %(idx -1, c_idx-1))
    else:
      logging.info("第%s行的接口被忽略执行!" %(idx -1))


if __name__=="__main__":
  main()

框架待完善~~请各路神仙多多指教~~

到此这篇关于python+requests接口自动化框架的实现的文章就介绍到这了,更多相关python requests接口自动化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python3实现163邮箱SMTP发送邮件

    python3实现163邮箱SMTP发送邮件

    这篇文章主要为大家详细介绍了Python3实现163邮箱SMTP发送邮件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-05-05
  • python测试框架unittest和pytest区别

    python测试框架unittest和pytest区别

    这篇文章主要介绍了python测试框架unittest和pytest区别,帮助大家更好的理解和学习使用python进行自动化测试,感兴趣的朋友可以了解下
    2021-04-04
  • numpy给array增加维度np.newaxis的实例

    numpy给array增加维度np.newaxis的实例

    今天小编就为大家分享一篇numpy给array增加维度np.newaxis的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • python3 numpy中数组相乘np.dot(a,b)运算的规则说明

    python3 numpy中数组相乘np.dot(a,b)运算的规则说明

    这篇文章主要介绍了python3 numpy中数组相乘np.dot(a,b)运算的规则说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • django之状态保持-使用redis存储session的例子

    django之状态保持-使用redis存储session的例子

    今天小编就为大家分享一篇django之状态保持-使用redis存储session的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 调整Jupyter notebook的启动目录操作

    调整Jupyter notebook的启动目录操作

    这篇文章主要介绍了调整Jupyter notebook的启动目录操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python Pandas中创建Series的三种方法总结

    Python Pandas中创建Series的三种方法总结

    这篇文章主要介绍了Python Pandas中创建Series的三种方法总结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • python中isdigit() isalpha()用于判断字符串的类型问题

    python中isdigit() isalpha()用于判断字符串的类型问题

    这篇文章主要介绍了python中isdigit() isalpha()用于判断字符串的类型问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • python BeautifulSoup使用方法详解

    python BeautifulSoup使用方法详解

    Beautiful Soup 是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖析树(parse tree)。 它提供简单又常用的导航(navigating),搜索以及修改剖析树的操作。它可以大大节省你的编程时间,下面我们就看看他是如何使用
    2013-11-11
  • Python中shape[0]、shape[1]和shape[-1]分别的意思详解(附代码)

    Python中shape[0]、shape[1]和shape[-1]分别的意思详解(附代码)

    刚开始使用python做东西,总是不太理解矩阵、数组相关的问题,所以在此记录shape方面的总结,下面这篇文章主要给大家介绍了关于Python中shape[0]、shape[1]和shape[-1]分别是什么意思的相关资料,需要的朋友可以参考下
    2022-11-11

最新评论