一些关于python 装饰器的个人理解

 更新时间:2020年08月31日 14:16:03   作者:Wonz  
这篇文章主要介绍了python 装饰器的一些理解,希望可以帮助大家更好的学习和使用python,感兴趣的朋友可以了解下

装饰器

本质是一个接受参数为函数的函数。
作用:为一个已经实现的方法添加额外的通用功能,比如日志记录、运行计时等。

举例

1.不带参数的装饰器,不用@

# 不带参数的装饰器
def deco_test(func):
  def wrapper(*args, **kwargs):
    print("before function")
    f = func(*args, **kwargs)
    print("after function")
    return f
  return wrapper

def do_something(a,b,c):
  print(a)
  time.sleep(1)
  print(b)
  time.sleep(1)
  print(c)
  return a

if __name__ == '__main__':
  # 不用@
  f = deco_test(do_something)("1","2","3")

输出:

before function
1
2
3
after function

个人理解:

相当于在 do_something 函数外面套了两个输出: before function 和 after function 。

2.不带参数的装饰器,用 @

# 不带参数的装饰器
def deco_test(func):
  def wrapper(*args, **kwargs):
    print("before function")
    f = func(*args, **kwargs)
    print("after function")
    return f
  return wrapper

@deco_test
def do_something(a,b,c):
  print(a)
  time.sleep(1)
  print(b)
  time.sleep(1)
  print(c)
  return a

if __name__ == '__main__':
  # 使用@
  f = do_something("1","2","3")

输出:

before function
1
2
3
after function

个人理解:

相当于执行 do_something 函数的时候,因为有 @ 的原因,已经知道有一层装饰器 deco_test ,所以不需要再单独写 deco_test(do_something) 了。

3.带参数的装饰器

# 带参数的装饰器
def logging(level):
  def wrapper(func):
    def inner_wrapper(*args, **kwargs):
      print("[{level}]: enter function {func}()".format(level=level, func=func.__name__))
      f = func(*args, **kwargs)
      print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__))
      return f
    return inner_wrapper
  return wrapper

@logging(level="debug")
def do_something(a,b,c):
  print(a)
  time.sleep(1)
  print(b)
  time.sleep(1)
  print(c)
  return a

if __name__ == '__main__':
  # 使用@
  f = do_something("1","2","3")

输出:

[debug]: enter function do_something()
1
2
3
after function: [debug]: enter function do_something()

个人理解:

装饰器带了一个参数 level = "debug" 。

最外层的函数 logging() 接受参数并将它们作用在内部的装饰器函数上面。内层的函数 wrapper() 接受一个函数作为参数,然后在函数上面放置一个装饰器。这里的关键点是装饰器是可以使用传递给 logging() 的参数的。

4.类装饰器

# 类装饰器
class deco_cls(object):
  def __init__(self, func):
    self._func = func

  def __call__(self, *args, **kwargs):
    print("class decorator before function")
    f = self._func(*args, **kwargs)
    print("class decorator after function")
    return f

@deco_cls
def do_something(a,b,c):
  print(a)
  time.sleep(1)
  print(b)
  time.sleep(1)
  print(c)
  return a

if __name__ == '__main__':
  # 使用@
  f = do_something("1","2","3")

输出:

class decorator before function
1
2
3
class decorator after function

个人理解:

使用一个装饰器去包装函数,返回一个可调用的实例。 因此定义了一个类装饰器。

5.两层装饰器

# 不带参数的装饰器
def deco_test(func):
  def wrapper(*args, **kwargs):
    print("before function")
    f = func(*args, **kwargs)
    print("after function")
    return f
  return wrapper

# 带参数的装饰器
def logging(level):
  def wrapper(func):
    def inner_wrapper(*args, **kwargs):
      print("[{level}]: enter function {func}()".format(level=level, func=func.__name__))
      f = func(*args, **kwargs)
      print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__))
      return f
    return inner_wrapper
  return wrapper

@logging(level="debug")
@deco_test
def do_something(a,b,c):
  print(a)
  time.sleep(1)
  print(b)
  time.sleep(1)
  print(c)
  return a

if __name__ == '__main__':
  # 使用@
  f = do_something("1","2","3")

输出:

[debug]: enter function wrapper()
before function
1
2
3
after function
after function: [debug]: enter function wrapper()

个人理解:

在函数 do_something() 外面先套一层 deco_test() 装饰器,再在最外面套一层 logging() 装饰器。

以上就是python 装饰器的一些个人理解的详细内容,更多关于python 装饰器的资料请关注脚本之家其它相关文章!

相关文章

  • python学习开发mock接口

    python学习开发mock接口

    这篇文章主要为大家详细介绍了python学习开发mock接口的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-04-04
  • Python面向对象之继承代码详解

    Python面向对象之继承代码详解

    这篇文章主要介绍了Python面向对象之继承代码详解,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python自动化处理Excel数据的操作过程

    Python自动化处理Excel数据的操作过程

    在实际数据处理和分析过程中,经常会遇到需要从大量数据中提取出特定日期范围内的信息的需求,本文将介绍如何使用Python的pandas库来处理Excel文件,感兴趣的朋友跟随小编一起看看吧
    2023-11-11
  • Python实现简单字典树的方法

    Python实现简单字典树的方法

    这篇文章主要介绍了Python实现简单字典树的方法,实例分析了Python字典树的定义、实现与使用技巧,需要的朋友可以参考下
    2016-04-04
  • Pandas Query方法使用深度总结

    Pandas Query方法使用深度总结

    大多数Pandas用户都熟悉iloc[]和loc[]索引器方法,用于检索行和列。但是随着检索数据的规则变得越来越复杂,这些方法也随之变得更加复杂而臃肿。本文将展示如何使用 query() 方法对数据框执行查询,感兴趣的可以了解一下
    2022-07-07
  • 三分钟python搭建支付宝三方支付

    三分钟python搭建支付宝三方支付

    本文主要介绍了三分钟python搭建支付宝三方支付,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • Python周期任务神器之Schedule模块使用详解

    Python周期任务神器之Schedule模块使用详解

    这篇文章主要为大家详细介绍了Python中的周期任务神器—Schedule模块的安装和初级、进阶使用方法,文中的示例代码讲解详细,需要的可以参考一下
    2022-04-04
  • Java中关于泛型接口的使用说明

    Java中关于泛型接口的使用说明

    这篇文章主要介绍了Java中关于泛型接口的使用说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python extract及contains方法代码实例

    Python extract及contains方法代码实例

    这篇文章主要介绍了Python extract及contains方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • python实现ssh及sftp功能(实例代码)

    python实现ssh及sftp功能(实例代码)

    这篇文章主要介绍了python实现ssh及sftp功能 ,本文分步骤通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03

最新评论