Python 必须了解的5种高级特征

 更新时间:2020年09月10日 10:11:47   作者:崔庆才  
Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,作者列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!

Python 是一种美丽的语言,它简单易用却非常强大。但你真的会用 Python 的所有功能吗?

任何编程语言的高级特征通常都是通过大量的使用经验才发现的。比如你在编写一个复杂的项目,并在 stackoverflow 上寻找某个问题的答案。然后你突然发现了一个非常优雅的解决方案,它使用了你从不知道的 Python 功能!

这种学习方式太有趣了:通过探索,偶然发现什么。

下面是 Python 的 5 种高级特征,以及它们的用法。

Lambda 函数

Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。

Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。

lambda 函数可以使用任意数量的参数,但表达式只能有一个。

x = lambda a, b : a * b
print(x(5, 6)) # prints '30'

x = lambda a : a*3 + 3
print(x(3)) # prints '12'

看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。

Map 函数

Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。

def square_it_func(a):
 return a * a

x = map(square_it_func, [1, 4, 7])
print(x) # prints '[1, 16, 49]'

def multiplier_func(a, b):
 return a * b

x = map(multiplier_func, [1, 4, 7], [2, 5, 8])
print(x) # prints '[2, 20, 56]'看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。

Filter 函数

filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。

详情请看如下示例:

# Our numbers
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

# Function that filters out all numbers which are odd
def filter_odd_numbers(num):

 if num % 2 == 0:
  return True
 else:
  return False

filtered_numbers = filter(filter_odd_numbers, numbers)

print(filtered_numbers)
# filtered_numbers = [2, 4, 6, 8, 10, 12, 14]

我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。

Itertools 模块

Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。

使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:

from itertools import *

# Easy joining of two lists into a list of tuples
for i in izip([1, 2, 3], ['a', 'b', 'c']):
 print i
# ('a', 1)
# ('b', 2)
# ('c', 3)

# The count() function returns an interator that 
# produces consecutive integers, forever. This 
# one is great for adding indices next to your list 
# elements for readability and convenience
for i in izip(count(1), ['Bob', 'Emily', 'Joe']):
 print i
# (1, 'Bob')
# (2, 'Emily')
# (3, 'Joe') 

# The dropwhile() function returns an iterator that returns 
# all the elements of the input which come after a certain 
# condition becomes false for the first time. 
def check_for_drop(x):
 print 'Checking: ', x
 return (x > 5)

for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):
 print 'Result: ', i

# Checking: 2
# Checking: 4
# Result: 6
# Result: 8
# Result: 10
# Result: 12


# The groupby() function is great for retrieving bunches
# of iterator elements which are the same or have similar 
# properties

a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])
for key, value in groupby(a):
 print(key, value), end=' ')

# (1, [1, 1, 1])
# (2, [2, 2, 2]) 
# (3, [3, 3]) 
# (4, [4]) 
# (5, [5]) 

Generator 函数

Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。

比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。

如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。

代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。

上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。

也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。

# (1) Using a for loopv
numbers = list()

for i in range(1000):
 numbers.append(i+1)

total = sum(numbers)

# (2) Using a generator
 def generate_numbers(n):
  num, numbers = 1, []
  while num < n:
   numbers.append(num)
  num += 1
  return numbers
 total = sum(generate_numbers(1000))

 # (3) range() vs xrange()
 total = sum(range(1000 + 1))
 total = sum(xrange(1000 + 1))

以上就是Python 必须了解的5种高级特征的详细内容,更多关于python 高级特征的资料请关注脚本之家其它相关文章!

相关文章

  • Pandas DataFrame分组求和、分组乘积的实例

    Pandas DataFrame分组求和、分组乘积的实例

    这篇文章主要介绍了Pandas DataFrame分组求和、分组乘积的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • Python excel合并居中值相同的单元格实例代码

    Python excel合并居中值相同的单元格实例代码

    在工作中遇到了合并具有相同条件的单元格合并的问题,下面这篇文章主要给大家介绍了关于Python excel合并居中值相同单元格的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-06-06
  • python函数指定默认值的实例讲解

    python函数指定默认值的实例讲解

    在本篇内容里小编给大家整理了一篇关于python函数指定默认值的实例讲解内容,有需要的朋友们可以跟着学习参考下。
    2021-03-03
  • Python实现检测文件MD5值的方法示例

    Python实现检测文件MD5值的方法示例

    这篇文章主要介绍了Python实现检测文件MD5值的方法,涉及Python针对大文件的读取、判断、运算、加密等相关操作技巧,需要的朋友可以参考下
    2018-04-04
  • python 自动化将markdown文件转成html文件的方法

    python 自动化将markdown文件转成html文件的方法

    这篇文章主要介绍了python 自动化将markdown文件转成html文件的方法的相关资料,本文介绍的非常详细,具有参考借鉴价值,需要的朋友可以参考下
    2016-09-09
  • Python基于Floyd算法求解最短路径距离问题实例详解

    Python基于Floyd算法求解最短路径距离问题实例详解

    这篇文章主要介绍了Python基于Floyd算法求解最短路径距离问题,结合完整实例形式详细分析了Python使用Floyd算法求解最短路径距离问题的相关操作技巧与注意事项,需要的朋友可以参考下
    2018-05-05
  • python开发准备工作之配置虚拟环境(非常重要)

    python开发准备工作之配置虚拟环境(非常重要)

    这篇文章主要介绍了python开发准备工作之配置虚拟环境(非常重要),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • 多版本Python共存的配置方法

    多版本Python共存的配置方法

    本文给大家分享的是由于工作需求,要求PC中安装python2和python3的开发环境。那么我们应该如何操作呢,下面我们就来探讨下。
    2017-05-05
  • python实现自动发送邮件

    python实现自动发送邮件

    这篇文章主要为大家详细介绍了python实现自动发送邮件功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • 详解Python如何生成词云的方法

    详解Python如何生成词云的方法

    这篇文章主要介绍了详解Python如何生成词云的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-06-06

最新评论