解决Ubuntu18中的pycharm不能调用tensorflow-gpu的问题

 更新时间:2020年09月17日 10:41:47   作者:AnswerThe  
这篇文章主要介绍了解决Ubuntu18中的pycharm不能调用tensorflow-gpu的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

问题描述:我通过控制台使用tensorflow-gpu没问题,但是通过pycharm使用却不可以,如下所示:

通过控制台:

answer@answer-desktop:/$ python
Python 3.7.0 (default, Jun 28 2018, 13:15:42) 
[GCC 7.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
2020-02-04 21:37:12.964610: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64
2020-02-04 21:37:12.964749: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64
2020-02-04 21:37:12.964777: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
>>> print(tf.test.is_gpu_available())
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2020-02-04 21:37:37.267421: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1795795000 Hz
2020-02-04 21:37:37.268461: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55913b67a840 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-02-04 21:37:37.268516: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor device (0): Host, Default Version
2020-02-04 21:37:37.272139: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-02-04 21:37:37.481038: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.481712: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55913b6eb960 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-02-04 21:37:37.481755: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor device (0): GeForce GTX 1060 3GB, Compute Capability 6.1
2020-02-04 21:37:37.482022: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.482528: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties: 
pciBusID: 0000:03:00.0 name: GeForce GTX 1060 3GB computeCapability: 6.1
coreClock: 1.7085GHz coreCount: 9 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
2020-02-04 21:37:37.482953: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-04 21:37:37.485492: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-02-04 21:37:37.487486: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-02-04 21:37:37.487927: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-02-04 21:37:37.490469: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-02-04 21:37:37.491950: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-02-04 21:37:37.499031: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-02-04 21:37:37.499301: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.500387: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.500847: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2020-02-04 21:37:37.500941: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-04 21:37:37.502172: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-04 21:37:37.502212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102]   0 
2020-02-04 21:37:37.502229: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0:  N 
2020-02-04 21:37:37.502436: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.503003: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.503593: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/device:GPU:0 with 2934 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 3GB, pci bus id: 0000:03:00.0, compute capability: 6.1)
True
>>>

返回的True,说明可以

通过pycharm却不行,如下图,返回False

解决办法:

1.修改~/.bashrc

将pycahrm的路径加到环境中,示例如下:

alias pycharm="bash /home/answer/文档/pycharm-professional-2019.3.2/pycharm-2019.3.2/bin/pycharm.sh"

刷新生效:

source ~/.bashrc

2.修改pycharm中的环境变量

选择pycharm 菜单栏Run ——> Run-Edit Configurations ——> Environment variables——> 将cuda的路径加进去 例如:LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64

在运行就可以了

到此这篇关于解决Ubuntu18中的pycharm不能调用tensorflow-gpu的问题的文章就介绍到这了,更多相关pycharm不能调用tensorflow-gpu内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python aiohttp百万并发极限测试实例分析

    Python aiohttp百万并发极限测试实例分析

    这篇文章主要介绍了Python aiohttp百万并发极限测试,结合实例形式分析了Python异步编程基于aiohttp客户端高并发请求的相关操作技巧与使用注意事项,需要的朋友可以参考下
    2019-10-10
  • python实现tree命令的使用示例

    python实现tree命令的使用示例

    本文主要介绍了python实现tree命令的使用示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-09-09
  • Pillow图像颜色处理的具体使用

    Pillow图像颜色处理的具体使用

    Pillow 提供了颜色处理模块 ImageColor,该模块支持不同格式的颜色,可以修改RGB的颜色,具有一定的参考价值,感兴趣的可以了解一下
    2021-11-11
  • 一篇文章搞懂Python的类与对象名称空间

    一篇文章搞懂Python的类与对象名称空间

    这篇文章主要给大家介绍了关于Python的类与对象名称空间的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-12-12
  • 使用Python实现PDF页面设置操作

    使用Python实现PDF页面设置操作

    这篇文章主要为大家详细介绍了如何使用Python实现PDF页面设置操作,例如旋转页面和调整页面顺序,感兴趣的小伙伴可以跟随小编一起学习一下
    2024-04-04
  • TensorFlow 滑动平均的示例代码

    TensorFlow 滑动平均的示例代码

    这篇文章主要介绍了TensorFlow 滑动平均的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-06-06
  • python实现监控阿里云账户余额功能

    python实现监控阿里云账户余额功能

    这篇文章主要介绍了python实现监控阿里云账户余额功能,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • Python3利用Dlib实现摄像头实时人脸检测和平铺显示示例

    Python3利用Dlib实现摄像头实时人脸检测和平铺显示示例

    这篇文章主要介绍了Python3利用Dlib实现摄像头实时人脸检测和平铺显示示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-02-02
  • Python图像处理库PIL的ImageEnhance模块使用介绍

    Python图像处理库PIL的ImageEnhance模块使用介绍

    这篇文章主要介绍了Python图像处理库PIL的ImageEnhance模块使用介绍,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • Python: tkinter窗口屏幕居中,设置窗口最大,最小尺寸实例

    Python: tkinter窗口屏幕居中,设置窗口最大,最小尺寸实例

    这篇文章主要介绍了Python: tkinter窗口屏幕居中,设置窗口最大,最小尺寸实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03

最新评论