如何从csv文件构建Tensorflow的数据集

 更新时间:2020年09月21日 11:13:15   作者:Sight Tech.  
这篇文章主要介绍了如何从csv文件构建Tensorflow的数据集,帮助大家更好的理解和使用Tensorflow,感兴趣的朋友可以了解下

从csv文件构建Tensorflow的数据集

当我们有一系列CSV文件,如何构建Tensorflow的数据集呢?

基本步骤

  1. 获得一组CSV文件的路径
  2. 将这组文件名,转成文件名对应的dataset => file_dataset
  3. 根据file_dataset中的每个文件名,读取文件内容 生成一个内容的dataset => content_dataset
  4. 这样的多个content_dataset, 拼接起来,形成一整个dataset
  5. 因为读出来的每条记录都是string类型, 所以还需要对每条记录做decode

存在一个这样的变量train_filenames

pprint.pprint(train_filenames)
#	['generate_csv\\train_00.csv',
#	 'generate_csv\\train_01.csv',
#	 'generate_csv\\train_02.csv',
#	 'generate_csv\\train_03.csv',
#	 'generate_csv\\train_04.csv',
#	 'generate_csv\\train_05.csv',
#	 'generate_csv\\train_06.csv',
#	 'generate_csv\\train_07.csv',
#	 'generate_csv\\train_08.csv',
#	 'generate_csv\\train_09.csv',
#	 'generate_csv\\train_10.csv',
#	 'generate_csv\\train_11.csv',
#	 'generate_csv\\train_12.csv',
#	 'generate_csv\\train_13.csv',
#	 'generate_csv\\train_14.csv',
#	 'generate_csv\\train_15.csv',
#	 'generate_csv\\train_16.csv',
#	 'generate_csv\\train_17.csv',
#	 'generate_csv\\train_18.csv',
#	 'generate_csv\\train_19.csv']

接着,我们用提前定义好的API构建文件名数据集file_dataset

filename_dataset = tf.data.Dataset.list_files(train_filenames)
for filename in filename_dataset:
  print(filename)
#tf.Tensor(b'generate_csv\\train_09.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_19.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_03.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_01.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_14.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_17.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_15.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_06.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_05.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_07.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_11.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_02.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_12.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_13.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_10.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_16.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_18.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_00.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_04.csv', shape=(), dtype=string)
#tf.Tensor(b'generate_csv\\train_08.csv', shape=(), dtype=string)

第三步, 根据每个文件名,去读取文件里面的内容

dataset = filename_dataset.interleave(
  lambda filename: tf.data.TextLineDataset(filename).skip(1),
  cycle_length=5
)

for line in dataset.take(3):
  print(line)

#tf.Tensor(b'0.46908349737250216,1.8718193706428006,0.13936365871212536,-0.011055733363841472,-0.6349261778219746,-0.036732316700563934,1.0259470089944995,-1.319095600336748,2.171', shape=(), dtype=string)
#tf.Tensor(b'-1.102093775650278,1.313248890578542,-0.7212003024178728,-0.14707856286537277,0.34720121604358517,0.0965085401826684,-0.74698820254838,0.6810563907247876,1.428', shape=(), dtype=string)
#tf.Tensor(b'-0.8901003715328659,0.9142699762469286,-0.1851678950250224,-0.12947457252940406,0.5958187430364827,-0.021255215877779534,0.7914317693724252,-0.45618713536506217,0.75', shape=(), dtype=string)

interleave的作用可以类比map, 对每个元素应用操作,然后还能把结果合起来。
因此,有了interleave, 我们就把第三四步,一起完成了
之所以skip(1),是因为这个csv第一行是header.
cycle_length是并行化构建数据集的线程数

好,第五步,解析每条记录

def parse_csv_line(line, n_fields=9):
  defaults = [tf.constant(np.nan)] * n_fields
  parsed_fields = tf.io.decode_csv(line, record_defaults=defaults)
  x = tf.stack(parsed_fields[:-1])
  y = tf.stack(parsed_fields[-1:])
  return x, y

parse_csv_line('1.2286258796252256,-1.0806245954111382,0.4444161407754224,-0.0352172575329119,0.9740347681426992,-0.003516079473801425,-0.8126524696425611,0.865609068204283,2.803', 9)

#(<tf.Tensor: shape=(8,), dtype=float32, numpy= array([ 1.2286259 , -1.0806246 , 0.44441614, -0.03521726, 0.9740348 ,-0.00351608, -0.81265247, 0.86560905], dtype=float32)>,<tf.Tensor: shape=(1,), dtype=float32, numpy=array([2.803], dtype=float32)>)

最后,将每条记录都应用这个方法,就完成了构建。

dataset = dataset.map(parse_csv_line)

完整代码

def csv_2_dataset(filenames, n_readers_thread = 5, batch_size = 32, n_parse_thread = 5, shuffle_buffer_size = 10000):
  
  dataset = tf.data.Dataset.list_files(filenames)
  dataset = dataset.repeat()
  dataset = dataset.interleave(
    lambda filename: tf.data.TextLineDataset(filename).skip(1),
    cycle_length=n_readers_thread
  )
  dataset.shuffle(shuffle_buffer_size)
  dataset = dataset.map(parse_csv_line, num_parallel_calls = n_parse_thread)
  dataset = dataset.batch(batch_size)
  return dataset

如何使用

train_dataset = csv_2_dataset(train_filenames, batch_size=32)
valid_dataset = csv_2_dataset(valid_filenames, batch_size=32)

model = ...

model.fit(train_set, validation_data=valid_set, 
          steps_per_epoch = 11610 // 32,
          validation_steps = 3870 // 32,
          epochs=100, callbacks=callbacks)

这里的11610 和 3870是什么?

这是train_dataset 和 valid_dataset中数据的数量,需要在训练中手动指定每个batch中参与训练的数据的多少。

model.evaluate(test_set, steps=5160//32)

同理,测试的时候,使用这样的数据集,也需要手动指定。
5160是测试数据集的总量。

以上就是如何从csv文件构建Tensorflow的数据集的详细内容,更多关于csv文件构建Tensorflow的数据集的资料请关注脚本之家其它相关文章!

相关文章

  • pytorch搭建模型的五大层次级别解读(由浅入深)

    pytorch搭建模型的五大层次级别解读(由浅入深)

    这篇文章主要介绍了pytorch搭建模型的五大层次级别(由浅入深),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • python中list列表复制的几种方法(赋值、切片、copy(),deepcopy())

    python中list列表复制的几种方法(赋值、切片、copy(),deepcopy())

    本文主要介绍了python中list列表复制的几种方法(赋值、切片、copy(),deepcopy()),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • 详解Python IO编程

    详解Python IO编程

    这篇文章主要介绍了Python IO编程的相关资料,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • Python3+SQLAlchemy+Sqlite3实现ORM教程

    Python3+SQLAlchemy+Sqlite3实现ORM教程

    这篇文章主要介绍了Python3+SQLAlchemy+Sqlite3实现ORM教程,需要的朋友可以参考下
    2021-02-02
  • Pytest+Allure使用示例教程

    Pytest+Allure使用示例教程

    Allure是开源的免费的自动化测试报告,支持Java,Python,我们来看看如何使用Python pytest与Allure整合,输出漂亮的测试报告,这篇文章主要介绍了Pytest+Allure使用教程,需要的朋友可以参考下
    2023-12-12
  • Python制作一个多功能音乐播放器

    Python制作一个多功能音乐播放器

    本文主要介绍了Python制作一个多功能音乐播放器,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Python+Selenium键盘鼠标模拟事件操作详解

    Python+Selenium键盘鼠标模拟事件操作详解

    这篇文章主要带大家一起学习一下Selenium的元素的基本操作与鼠标键盘模拟事件的操作,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2022-06-06
  • 使用python xmlrpc连接odoo方式

    使用python xmlrpc连接odoo方式

    这篇文章主要介绍了使用python xmlrpc连接odoo方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-01-01
  • python中将两组数据放在一起按照某一固定顺序shuffle的实例

    python中将两组数据放在一起按照某一固定顺序shuffle的实例

    今天小编就为大家分享一篇python中将两组数据放在一起按照某一固定顺序shuffle的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python类参数定义及数据扩展方式unsqueeze/expand

    python类参数定义及数据扩展方式unsqueeze/expand

    本文主要介绍了python类参数定义及数据扩展方式unsqueeze/expand,文章通过围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08

最新评论