python 进程池pool使用详解

 更新时间:2020年10月15日 11:43:04   作者:小名叫小明  
这篇文章主要介绍了python 进程池pool使用的相关资料,帮助大家更好的理解和学习python进程,感兴趣的朋友可以了解下

和选用线程池来关系多线程类似,当程序中设置到多进程编程时,Python 提供了更好的管理多个进程的方式,就是使用进程池。

在利用 Python 进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。

当被操作对象数目不大时,可以直接利用 multiprocessing 中的 Process 动态生成多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

Pool可以提供指定数量的进程供用户调用,当有新的请求提交到 pool 中时,如果进程池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

Python multiprocessing 模块提供了 Pool() 函数,专门用来创建一个进程池,该函数的语法格式如下:

multiprocessing.Pool( processes )

其中,processes 参数用于指定该进程池中包含的进程数。

如果进程是 None,则默认使用 os.cpu_count() 返回的数字(根据本地的 cpu 个数决定,processes 小于等于本地的 cpu 个数)。

请看下面的实例:

from multiprocessing import Pool
import os
import time
import random

def worker(msg):
  t_start = time.time()
  print("%s开始执行,进程号为%d" % (msg, os.getpid()))
  # random.random()随机生成0~1之间的浮点数
  time.sleep(random.random()*2)
  t_stop = time.time()
  print(msg, "执行完毕,耗时%0.2f" % (t_stop-t_start))

if __name__ == "__main__":
  po = Pool(3) # 定义一个进程池,最大进程数3
  for i in range(0, 8):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker, (i,))

  print("----start----")
  # 关闭进程池,关闭后po不再接收新的请求
  po.close()
  # 等待po中所有子进程执行完成,必须放在close语句之后
  po.join()
  print("-----end-----")

运行结果:

multiprocessing.Pool 常用方法说明

apply_async(func[, args[, kwds]]) :使用非阻塞方式调用 func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args 为传递给 func 的参数列表,kwds 为传递给 func 的关键字参数列表。

close():关闭 Pool,使其不再接受新的任务。

terminate():不管任务是否完成,立即终止。

join():主进程阻塞,等待子进程的退出, 必须在 close 或 terminate 之后使用。

进程池中的 Queue

如果要使用 Pool 创建进程,就需要使用 multiprocessing.Manager() 中的 Queue(),而不是 multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

from multiprocessing import Manager, Pool
import os
import time
import random

def writer(q):
  print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
  for i in "xiaoming":
    q.put(i)

def reader(q):
  print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
  for i in range(q.qsize()):
    print("reader从Queue获取到消息:%s" % q.get(True))

if __name__ == "__main__":
  print("(%s) start" % os.getpid())
  # 使用Manager中的Queue
  q = Manager().Queue()
  po = Pool()
  po.apply_async(writer, (q,))
  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据
  time.sleep(1)
  po.apply_async(reader, (q,))
  po.close()
  po.join()
  print("(%s) End" % os.getpid())

运行结果:

(17528) start
writer启动(2216),父进程为(17528)
reader启动(2216),父进程为(17528)
reader从Queue获取到消息:x
reader从Queue获取到消息:i
reader从Queue获取到消息:a
reader从Queue获取到消息:o
reader从Queue获取到消息:m
reader从Queue获取到消息:i
reader从Queue获取到消息:n
reader从Queue获取到消息:g
(17528) End

以上就是python 进程池pool使用详解的详细内容,更多关于python 进程池pool的资料请关注脚本之家其它相关文章!

相关文章

  • Python时间戳使用和相互转换详解

    Python时间戳使用和相互转换详解

    这篇文章主要为大家详细介绍了Python时间戳使用和相互转换的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12
  • 十行Python3代码实现把情书写到图片中

    十行Python3代码实现把情书写到图片中

    这篇文章主要为大家介绍了如何利用Python语言实现将情书写到照片中,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下
    2022-04-04
  • Python编程异步爬虫之aiohttp模块的基本用法

    Python编程异步爬虫之aiohttp模块的基本用法

    aiohttp 模块是一个基于 asyncio 的 HTTP 客户端和服务器框架,可以用于异步处理 HTTP 请求和响应,这篇文章给大家介绍Python编程异步爬虫之aiohttp模块的基本用法,感兴趣的朋友一起看看吧
    2024-03-03
  • 使用Python爬了4400条淘宝商品数据,竟发现了这些“潜规则”

    使用Python爬了4400条淘宝商品数据,竟发现了这些“潜规则”

    这篇文章主要介绍了使用Python爬了4400条淘宝商品数据,竟发现了这些“潜规则”,笔者用 Python 爬取淘宝某商品的全过程,并对商品数据进行了挖掘与分析,最终得出结论。需要的朋友可以参考下
    2018-03-03
  • 使用 Python 处理 JSON 格式的数据

    使用 Python 处理 JSON 格式的数据

    JSON 是一个很好的选择。如果你对 Python 有所了解,就更加事半功倍了。下面就来介绍一下如何使用 Python 处理 JSON 数据。感兴趣的朋友跟随小编一起看看吧
    2019-07-07
  • 基于Python的XSS测试工具XSStrike使用方法

    基于Python的XSS测试工具XSStrike使用方法

    XSS(Cross Site Scripting,跨站脚本攻击)是一类特殊的Web客户端脚本注入攻击手段,通常指攻击者通过“HTML注入”篡改了网页,插入恶意的脚本,从而在用户浏览网页时控制浏览器的一种攻击。
    2017-07-07
  • Python pip更换清华源镜像的详细教程

    Python pip更换清华源镜像的详细教程

    大家经常会使用 pip 进行python 的第三方库安装,但是,有时会出现ERROR: No matching distribution found for PyQt6这类的错误,其实大部分原因是我们国内网络的问题,所以本文给大家介绍了Python pip更换清华源镜像的详细教程,需要的朋友可以参考下
    2024-09-09
  • 浅谈PyTorch的可重复性问题(如何使实验结果可复现)

    浅谈PyTorch的可重复性问题(如何使实验结果可复现)

    今天小编就为大家分享一篇浅谈PyTorch的可重复性问题(如何使实验结果可复现),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 详解Numpy中的广播原则/机制

    详解Numpy中的广播原则/机制

    这篇文章主要介绍了Numpy中的广播原则/机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-09-09
  • python数据结构之列表和元组的详解

    python数据结构之列表和元组的详解

    这篇文章主要介绍了python数据结构之列表和元组的详解的相关资料,希望通过本文能帮助到大家,让大家彻底理解掌握这部分内容,需要的朋友可以参考下
    2017-09-09

最新评论