协程Python 中实现多任务耗资源最小的方式

 更新时间:2020年10月19日 08:48:24   作者:编程的朝圣之路  
协程是 Python 中另外一种实现多任务的方式,只不过比线程更小,占用更小执行单元(理解为需要的资源)。这篇文章主要介绍了协程Python 中实现多任务耗资源最小的方式,需要的朋友可以参考下

协程,又称微线程,纤程。英文名 Coroutine。

协程是 Python 中另外一种实现多任务的方式,只不过比线程更小,占用更小执行单元(理解为需要的资源)。

为啥说它是一个执行单元,因为它自带 CPU 上下文。这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程。 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的。

通俗的理解:在一个线程中的某个函数,可以在任何地方保存当前函数的一些临时变量等信息,然后切换到另外一个函数中执行,注意不是通过调用函数的方式做到的,并且切换的次数以及什么时候再切换到原来的函数都由开发者自己确定。

协程和线程差异

在实现多任务时, 线程切换从系统层面远不止保存和恢复 CPU上下文这么简单。

操作系统为了程序运行的高效性每个线程都有自己缓存 Cache 等等数据,操作系统还会帮你做这些数据的恢复操作,所以线程的切换非常耗性能。

但是协程的切换只是单纯的操作 CPU 的上下文,所以一秒钟切换个上百万次系统都抗得住。

之前我们讲过 yield 关键字,现在就用它来实现多任务。

例子:

import time

def task_1():
  while True:
    print("--1--")
    time.sleep(0.5)
    yield

def task_2():
  while True:
    print("--2--")
    time.sleep(0.5)
    yield

def main():
  t1 = task_1()
  t2 = task_2()
  while True:
    next(t1)
    next(t2)

if __name__ == "__main__":
  main()

运行过程:

先让 t1 运行一会,当 t1 遇到 yield 的时候,再返回到 main() 循环的地方,然后执行 t2 , 当它遇到 yield 的时候,再次切换到 t1 中,这样 t1 和 t2 就交替运行,最终实现了多任务,协程。

运行结果:

greenlet

为了更好使用协程来完成多任务,Python 中的 greenlet 模块对其封装,从而使得切换任务变的更加简单。

首先你要安装一下 greenlet 模块。

pip3 install greenlet
from greenlet import greenlet
import time

def test1():
  while True:
    print("---A--")
    gr2.switch()
    time.sleep(0.5)

def test2():
  while True:
    print("---B--")
    gr1.switch()
    time.sleep(0.5)

gr1 = greenlet(test1)
gr2 = greenlet(test2)

# 切换到gr1中运行
gr1.switch()

运行结果:

和我们之前用 yield 实现的效果基本一样,greenlet 其实是对 yield 进行了简单的封装。

greenlet 实现多任务要比 yield 更简单,但是我们以后还是不用它。

上面例子中的延时是0.5秒,如果延迟是100秒,那么程序就会卡住100秒,就算有其他需要执行的任务,系统也不会切换过去,这100秒的时间是无法利用的。

这个问题下面来解决。

gevent

greenlet 已经实现了协程,但是还是得进行人工切换,是不是觉得太麻烦了。

Python 还有一个比 greenlet 更强大的并且能够自动切换任务的模块 gevent。

gevent 是对 greenlet 的再次封装。

其原理是当一个 greenlet 遇到 IO(指的是input output 输入输出,比如网络、文件操作等)操作时,比如访问网络,就自动切换到其他的 greenlet,等到 IO 操作完成,再在适当的时候切换回来继续执行。

由于 IO 操作非常耗时,经常使程序处于等待状态,有了gevent 为我们自动切换协程,就保证总有 greenlet 在运行,而不是等待 IO。

首先还是得先安装 gevent。

pip3 install gevent

例子:

import gevent

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

运行结果:

<Greenlet at 0x35aae40: f(3)> 0
<Greenlet at 0x35aae40: f(3)> 1
<Greenlet at 0x35aae40: f(3)> 2
<Greenlet at 0x374a780: f(3)> 0
<Greenlet at 0x374a780: f(3)> 1
<Greenlet at 0x374a780: f(3)> 2
<Greenlet at 0x374a810: f(3)> 0
<Greenlet at 0x374a810: f(3)> 1
<Greenlet at 0x374a810: f(3)> 2

可以看到,3个 greenlet 是依次运行而不是交替运行。

这还无法判断 gevent 是否实现了多任务的效果,最好的判断情况是在运行结果中 0 1 2 不按顺序出现。

在 gevent 的概念中,我们提到 gevent 在遇到延时的时候会自动切换任务。

那么,我们先给上面的例子添加延时,再看效果。

import gevent
import time

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    time.sleep(0.5)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

运行结果:

<Greenlet at 0x36aae40: f(3)> 0
<Greenlet at 0x36aae40: f(3)> 1
<Greenlet at 0x36aae40: f(3)> 2
<Greenlet at 0x384a780: f(3)> 0
<Greenlet at 0x384a780: f(3)> 1
<Greenlet at 0x384a780: f(3)> 2
<Greenlet at 0x384a810: f(3)> 0
<Greenlet at 0x384a810: f(3)> 1
<Greenlet at 0x384a810: f(3)> 2

在添加了延时之后,运行结果并没有改变。

其实,gevent 要的不是 time.sleep() 的延时,而是 gevent.sleep() 的延时。

import gevent

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    gevent.sleep(0.5)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

join 还有一种更简单的写法。

import time
import gevent

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    gevent.sleep(0.5)

gevent.joinall([
  gevent.spawn(f, 3),
  gevent.spawn(f, 3),
  gevent.spawn(f, 3)
])

一般都是后面的这种写法。

运行结果:

<Greenlet at 0x2e5ae40: f(3)> 0
<Greenlet at 0x2ffa780: f(3)> 0
<Greenlet at 0x2ffa810: f(3)> 0
<Greenlet at 0x2e5ae40: f(3)> 1
<Greenlet at 0x2ffa780: f(3)> 1
<Greenlet at 0x2ffa810: f(3)> 1
<Greenlet at 0x2e5ae40: f(3)> 2
<Greenlet at 0x2ffa780: f(3)> 2
<Greenlet at 0x2ffa810: f(3)> 2

这下终于实现多任务的效果了, gevent 在遇到延时的时候,就自动切换到其他任务。

这里是将 time 中的 sleep 换成了 gevent 中的 sleep。

那如果有网络程序,网络程序中也有许多堵塞,比如 connect, recv,accept,需要不需要换成 gevent 中的对应方法。

理论上来说,是要换的。如果想用 gevent,那么就要把所有的延时操作,堵塞这一类的函数,统统换成 gevent 中的对应方法。

那有个问题,万一我的代码已经写了10万行了,这换起来怎么破......

有什么办法不需要手动修改么,有,打个补丁即可。

import time
import gevent
from gevent import monkey

# 有耗时操作时需要
# 将程序中用到的耗时操作的代码,换为gevent中自己实现的模块
monkey.patch_all() 

def f(n):
  for i in range(n):
    print(gevent.getcurrent(), i)
    time.sleep(0.5)

g1 = gevent.spawn(f, 3)
g2 = gevent.spawn(f, 3)
g3 = gevent.spawn(f, 3)
g1.join()
g2.join()
g3.join()

monkey.patch_all() 会自动去检查代码,将所有会产生延时堵塞的方法,都自动换成 gevent 中的方法。

运行结果:

<Greenlet at 0x3dd91e0: f(3)> 0
<Greenlet at 0x3dd9810: f(3)> 0
<Greenlet at 0x3dd99c0: f(3)> 0
<Greenlet at 0x3dd91e0: f(3)> 1
<Greenlet at 0x3dd9810: f(3)> 1
<Greenlet at 0x3dd99c0: f(3)> 1
<Greenlet at 0x3dd91e0: f(3)> 2
<Greenlet at 0x3dd9810: f(3)> 2
<Greenlet at 0x3dd99c0: f(3)> 2

总结:

通过利用延时的时间去做其他任务,把时间都利用起来,这就是协程最大的意义。

到此这篇关于协程Python 中实现多任务耗资源最小的方式的文章就介绍到这了,更多相关Python多任务耗资源最小方式内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 用python生成一张壁纸实例代码

    用python生成一张壁纸实例代码

    大家好,本篇文章主要讲的是用python生成一张壁纸实例代码,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-02-02
  • 基于Django框架的rest_framework的身份验证和权限解析

    基于Django框架的rest_framework的身份验证和权限解析

    Django 是一个基于 Python 的 Web 框架,可让您快速创建高效的 Web 应用程序,这篇文章主要介绍了基于Django框架的rest_framework的身份验证和权限解析,需要的朋友可以参考下
    2023-05-05
  • Python设计模式结构型组合模式

    Python设计模式结构型组合模式

    这篇文章主要介绍了Python设计模式结构型组合模式,组合模式即Composite Pattern,将对象组合成成树形结构以表示“部分-整体”的层次结构,组合模式使得用户对单个对象和组合对象的使用具有一致性,下文具有一定的参考价值,需要的小伙伴可以参考一下
    2022-02-02
  • python中matplotlib条件背景颜色的实现

    python中matplotlib条件背景颜色的实现

    这篇文章主要给大家介绍了关于python中matplotlib条件背景颜色的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-09-09
  • 实例探究Python以并发方式编写高性能端口扫描器的方法

    实例探究Python以并发方式编写高性能端口扫描器的方法

    端口扫描器就是向一批端口上发送请求来检测端口是否打开的程序,这里我们以实例探究Python以并发方式编写高性能端口扫描器的方法
    2016-06-06
  • 使用Python操作Excel中图片的基础示例(插入、替换、提取、删除)

    使用Python操作Excel中图片的基础示例(插入、替换、提取、删除)

    Excel是主要用于处理表格和数据的工具,我们也能在其中插入、编辑或管理图片,为工作表增添视觉效果,提升报告的吸引力,本文将详细介绍如何使用Python操作Excel中的图片,文中有详细代码示例供大家参考,需要的朋友可以参考下
    2024-07-07
  • Python中的命名元组简单而强大的数据结构示例详解

    Python中的命名元组简单而强大的数据结构示例详解

    namedtuple是Python中一个非常有用的数据结构,它提供了一种简单的方式创建具有固定字段的轻量级对象,通过使用namedtuple,可以提高代码的可读性和可维护性,避免了使用类定义对象的复杂性,这篇文章主要介绍了Python中的命名元组简单而强大的数据结构,需要的朋友可以参考下
    2024-05-05
  • Python实现RabbitMQ6种消息模型的示例代码

    Python实现RabbitMQ6种消息模型的示例代码

    这篇文章主要介绍了Python实现RabbitMQ6种消息模型的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

    Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

    浅拷贝和深拷贝是Python基础学习中必须辨析的知识点,这里我们将为大家解析Python中的复制操作及copy模块中的浅拷贝与深拷贝方法:
    2016-07-07
  • Python 分布式缓存之Reids数据类型操作详解

    Python 分布式缓存之Reids数据类型操作详解

    这篇文章主要介绍了Python 分布式缓存之Reids数据类型操作详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06

最新评论