Python绘图实现台风路径可视化代码实例

 更新时间:2020年10月23日 09:52:46   作者:松鼠爱吃饼干  
这篇文章主要介绍了Python绘图实现台风路径可视化代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

台风是重大灾害性天气,台风引起的直接灾害通常由三方面造成,狂风、暴雨、风暴潮,除此以外台风的这些灾害极易诱发城市内涝、房屋倒塌、山洪、泥石流等次生灾害。正因如此,台风在科研和业务工作中是研究的重点。希望这次台风路径可视化可以给予大家一点点帮助。

台风路径的获取

中国气象局(CMA)

中国气象局(CMA)的台风最佳路径数据集(BST),BST是之后对历史台风路径进行校正后发布的,其经纬度、强度、气压具有更高的可靠性,但是时间分辨率为6小时,部分3小时,这一点不如观测数据。下载地址:

http://tcdata.typhoon.org.cn/

温州台风网

温州台风网的数据是实时发布数据的记录,时间分辨率最高达1小时,对于台风轨迹具有更加精细化的表述。下载地址:

http://www.wztf121.com/

示例

导入模块并读取数据,使用BST的2018年台风路径数据作为示例,已经将原始的txt文件转换为xls文件。

import os, glob
import pandas as pd
import numpy as np
import shapely.geometry as sgeom
import matplotlib.pyplot as plt
from matplotlib.image import imread
from matplotlib.animation import FuncAnimation
import matplotlib.lines as mlines
import cartopy.crs as ccrs
import cartopy.feature as cfeat
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter
import cartopy.io.shapereader as shpreader
import cartopy.io.img_tiles as cimgt
from PIL import Image
import warnings 
warnings.filterwarnings('ignore')
df = pd.read_csv('./2018typhoon.csv')

定义等级色标

def get_color(level):
  global color
  if level == '热带低压' or level == '热带扰动':
    color='#FFFF00'
  elif level == '热带风暴':
    color='#6495ED'
  elif level == '强热带风暴':
    color='#3CB371'
  elif level == '台风':
    color='#FFA500'
  elif level == '强台风':
    color='#FF00FF'
  elif level == '超强台风':
    color='#DC143C'
  return color

定义底图函数

def create_map(title, extent):
  fig = plt.figure(figsize=(12, 8))
  ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
  url = 'http://map1c.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi'
  layer = 'BlueMarble_ShadedRelief'
  ax.add_wmts(url, layer)
  ax.set_extent(extent,crs=ccrs.PlateCarree())

  gl = ax.gridlines(draw_labels=False, linewidth=1, color='k', alpha=0.5, linestyle='--')
  gl.xlabels_top = gl.ylabels_right = False 
  ax.set_xticks(np.arange(extent[0], extent[1]+5, 5))
  ax.set_yticks(np.arange(extent[2], extent[3]+5, 5))
  ax.xaxis.set_major_formatter(LongitudeFormatter())
  ax.xaxis.set_minor_locator(plt.MultipleLocator(1))
  ax.yaxis.set_major_formatter(LatitudeFormatter())
  ax.yaxis.set_minor_locator(plt.MultipleLocator(1))
  ax.tick_params(axis='both', labelsize=10, direction='out')

  a = mlines.Line2D([],[],color='#FFFF00',marker='o',markersize=7, label='TD',ls='')
  b = mlines.Line2D([],[],color='#6495ED', marker='o',markersize=7, label='TS',ls='')
  c = mlines.Line2D([],[],color='#3CB371', marker='o',markersize=7, label='STS',ls='')
  d = mlines.Line2D([],[],color='#FFA500', marker='o',markersize=7, label='TY',ls='')
  e = mlines.Line2D([],[],color='#FF00FF', marker='o',markersize=7, label='STY',ls='')
  f = mlines.Line2D([],[],color='#DC143C', marker='o',markersize=7, label='SSTY',ls='')
  ax.legend(handles=[a,b,c,d,e,f], numpoints=1, handletextpad=0, loc='upper left', shadow=True)
  plt.title(f'{title} Typhoon Track', fontsize=15)
  return ax

定义绘制单个台风路径方法,并绘制2018年第18号台风温比亚。

def draw_single(df):
  ax = create_map(df['名字'].iloc[0], [110, 135, 20, 45])
  for i in range(len(df)):
    ax.scatter(list(df['经度'])[i], list(df['纬度'])[i], marker='o', s=20, color=get_color(list(df['强度'])[i]))

  for i in range(len(df)-1):
    pointA = list(df['经度'])[i],list(df['纬度'])[i]
    pointB = list(df['经度'])[i+1],list(df['纬度'])[i+1]
    ax.add_geometries([sgeom.LineString([pointA, pointB])], color=get_color(list(df['强度'])[i+1]),crs=ccrs.PlateCarree())
  plt.savefig('./typhoon_one.png')
draw_single(df[df['编号']==1818])

定义绘制多个台风路径方法,并绘制2018年全年的全部台风路径。

def draw_multi(df):
  L = list(set(df['编号']))
  L.sort(key=list(df['编号']).index)
  ax = create_map('2018', [100, 180, 0, 45])
  for number in L:
    df1 = df[df['编号']==number]
    for i in range(len(df1)-1):
      pointA = list(df1['经度'])[i],list(df1['纬度'])[i]
      pointB = list(df1['经度'])[i+1],list(df1['纬度'])[i+1]
      ax.add_geometries([sgeom.LineString([pointA, pointB])], color=get_color(list(df1['强度'])[i+1]),crs=ccrs.PlateCarree())
  plt.savefig('./typhoon_multi.png')
draw_multi(df)

定义绘制单个台风gif路径演变方法,并绘制2018年第18号台风的gif路径图。

def draw_single_gif(df):
  for state in range(len(df.index))[:]:
    ax = create_map(f'{df["名字"].iloc[0]} {df["时间"].iloc[state]}', [110, 135, 20, 45])
    for i in range(len(df[:state])):
      ax.scatter(df['经度'].iloc[i], df['纬度'].iloc[i], marker='o', s=20, color=get_color(df['强度'].iloc[i]))
    for i in range(len(df[:state])-1):
      pointA = df['经度'].iloc[i],df['纬度'].iloc[i]
      pointB = df['经度'].iloc[i+1],df['纬度'].iloc[i+1]
      ax.add_geometries([sgeom.LineString([pointA, pointB])], color=get_color(df['强度'].iloc[i+1]),crs=ccrs.PlateCarree())
    print(f'正在绘制第{state}张轨迹图')
    plt.savefig(f'./{df["名字"].iloc[0]}{str(state).zfill(3)}.png', bbox_inches='tight')
  # 将图片拼接成动画
  imgFiles = list(glob.glob(f'./{df["名字"].iloc[0]}*.png'))
  images = [Image.open(fn) for fn in imgFiles]
  im = images[0]
  filename = f'./track_{df["名字"].iloc[0]}.gif'
  im.save(fp=filename, format='gif', save_all=True, append_images=images[1:], duration=500)
draw_single_gif(df[df['编号']==1818])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 实现交换两个列表元素的位置示例

    python 实现交换两个列表元素的位置示例

    今天小编就为大家分享一篇python 实现交换两个列表元素的位置示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • python自动计算图像数据集的RGB均值

    python自动计算图像数据集的RGB均值

    这篇文章主要为大家详细介绍了python自动计算图像数据集的RGB均值,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • python保留小数函数的几种使用总结

    python保留小数函数的几种使用总结

    本文主要介绍了python保留小数函数的几种使用总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • pyspark.sql.DataFrame与pandas.DataFrame之间的相互转换实例

    pyspark.sql.DataFrame与pandas.DataFrame之间的相互转换实例

    今天小编就为大家分享一篇pyspark.sql.DataFrame与pandas.DataFrame之间的相互转换实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-08-08
  • Python 实现将某一列设置为str类型

    Python 实现将某一列设置为str类型

    这篇文章主要介绍了Python 实现将某一列设置为str类型,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python3.5 创建文件的简单实例

    Python3.5 创建文件的简单实例

    下面小编就为大家分享一篇Python3.5 创建文件的简单实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 纯Python开发的nosql数据库CodernityDB介绍和使用实例

    纯Python开发的nosql数据库CodernityDB介绍和使用实例

    这篇文章主要介绍了纯Python开发的nosql数据库CodernityDB介绍和使用实例,本文实例包含数据插入、数据更新、数据删除、数据查询等,需要的朋友可以参考下
    2014-10-10
  • Keras保存模型并载入模型继续训练的实现

    Keras保存模型并载入模型继续训练的实现

    这篇文章主要介绍了Keras保存模型并载入模型继续训练的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • 基于Python编写个语法解析器

    基于Python编写个语法解析器

    这篇文章主要为大家详细介绍了如何基于Python编写个语法解析器,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解一下
    2023-07-07
  • python局域网ip扫描示例分享

    python局域网ip扫描示例分享

    这篇文章主要介绍了python局域网ip扫描示例,需要的朋友可以参考下
    2014-04-04

最新评论