python各种excel写入方式的速度对比
经过实验,新建一个excel表格,该表格拥有7个sheet,每个sheet有800条数据,其中最后一个sheet为空。
首先使用openpyxl进行写入操作,代码如下:
book = openpyxl.Workbook() auths = Auth.objects.filter(owner_id=1) filename = '导出数据' for auth in auths: sheet = book.create_sheet(auth.name, index = 0) sheet.append([ _("书名"), _("作者"), _("译者"), _("出版社"), _("序列号"), _("总页数"), ]) objs = None objs = Book.objects.filter(owner_id=auth.id) for u in objs: data = [] data.append(u.name) data.append(auth.name) data.append(u.translator) data.append(u.press) data.append(u.serializer) data.append(u.page) sheet.append(data) return ExcelBookResponse(book, filename)
使用xlwt写入数据:
book = xlwt.Workbook() auths = Auth.objects.filter(owner_id=1) filename = '导出数据' for auth in auths: sheet = book.add_sheet(sensor.name) sheet.write(0, 0, _("书名")) sheet.write(0, 1, _("作者")) sheet.write(0, 2, _("译者")) sheet.write(0, 3, _("出版社")) sheet.write(0, 4, _("序列号")) sheet.write(0, 5, _("总页数")) i = 1 objs = None objs = Book.objects.filter(owner_id=auth.id) for u in objs: sheet.write(i, 0, u.name) sheet.write(i, 1, auth.name) sheet.write(i ,2,u.translator) sheet.write(i ,3,u.press) sheet.write(i, 4, u.serializer) sheet.write(i, 5, u.page) i += 1 return ExcelBookResponse(book, filename)
使用XlsxWriter写入数据:
book = xlsxwriter.Workbook(output) auths = Auth.objects.filter(owner_id=1) for auth in auths: sheet = book.add_worksheet(sensor.name) header = [ _("书名"), _("作者"), _("译者"), _("出版社"), _("序列号"), _("总页数"), ] sheet.write_row("A1", header) objs = Book.objects.filter(owner_id=auth.id) i = 1 for u in objs: sheet.write(i, 0, u.name) sheet.write(i, 1, auth.name) sheet.write(i ,2,u.translator) sheet.write(i ,3,u.press) sheet.write(i, 4, u.serializer) sheet.write(i, 5, u.page) i += 1 book.close() file_ext = 'xlsx' mimetype = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' # self['Content-Disposition'] = 'attachment; filename*=UTF-8\'\'"{2}.{1}"; filename="{0}.{1}"'.format(filename.replace('"', '\"'), file_ext, urllib.parse.quote(filename.replace('"', '\"'))).encode('utf8') return HttpResponse(content=output.getvalue(), content_type=mimetype)
三者的时间比较(两种方式的文件内容是一样的):
openpyxl: 文件大小为110.75kb, 平均时间大约为570ms
xlwt: 文件大小为505.91kb,平均时间大约为440ms
XlsxWrite: 文件大小为109.28kb,平均时间大约为500ms
xlwt写入的行数有限制,因此对于较大的文件来说,XlsxWrite的速度较快一点
补充知识:python写入excel文件太慢如何解决-python往excel写入大量数据
目前用的openpyxl,从数据库获取8W行的数据通过openpyxl写入excel,要花费接近8分钟,这也太慢了,用kettle的插件秒进,python有什么方法能提升速度么,或者openpyxl能批量插入么,按行效率太低了
#!/usr/bin/python # -*- coding: UTF-8 -*- from openpyxl import Workbook as wbook def xlsx(filename, rows_info, sheet='Result'): if filename and sheet: wb = wbook() _sheet = wb.active _sheet.title = sheet row = _sheet.max_row for line in rows_info: if isinstance(line, str): row_list = [line] elif isinstance(line, dict): row_list = list(line.values()) else: try: row_list = list(line) except: row_list = [] for col in range(0, len(row_list)): col_info = row_list[col] _sheet.cell(row, col + 1, col_info) row += 1 wb.save(filename) else: return '文件和sheet不能为空'
以上这篇python各种excel写入方式的速度对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
分析PyTorch Dataloader报错ValueError:num_samples的另一种可能原因
这篇文章主要介绍了分析PyTorch Dataloader报错ValueError:num_samples的另一种可能原因,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2024-02-02
最新评论