pytorch学习教程之自定义数据集

 更新时间:2020年11月10日 11:52:40   作者:侠之大者_7d3f  
这篇文章主要给大家介绍了关于pytorch学习教程之自定义数据集的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

自定义数据集

在训练深度学习模型之前,样本集的制作非常重要。在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。

开发环境

  • Ubuntu 18.04
  • pytorch 1.0
  • pycharm

实验目的

  1. 掌握pytorch中数据集相关的API接口和类
  2. 熟悉数据集制作的整个流程

实验过程

1.收集图像样本

以简单的猫狗二分类为例,可以在网上下载一些猫狗图片。创建以下目录:

  • data-------------根目录
  • data/test-------测试集
  • data/train------训练集
  • data/val--------验证集

在test/train/val之下在校分别创建2个文件夹,dog, cat

cat, dog文件夹下分别存放2类图像:

标签

种类 标签
cat 0
dog 1

之后写一个简单的python脚本,生成txt文件,用于指明每个图像和标签的对应关系。

格式: /cat/1.jpg 0 \n dog/1.jpg 1 \n .....

如图:

至此,样本集的收集以及简单归类完成,下面将开始采用pytorch的数据集相关API和类。

2. 使用pytorch相关类,API对数据集进行封装

2.1 pytorch中数据集相关的类,接口

pytorch中数据集相关的类位于torch.utils.data package中。

https://pytorch.org/docs/stable/data.html

本次实验,主要使用以下类:

torch.utils.data.Dataset
torch.utils.data.DataLoader

Dataset类的使用: 所有的类都应该是此类的子类(也就是说应该继承该类)。 所有的子类都要重写(override) __len()__, __getitem()__ 这两个方法。

方法 作用
__len()__ 此方法应该提供数据集的大小(容量)
__getitem()__ 此方法应该提供支持下标索方式引访问数据集

这里和Java抽象类很相似,在抽象类abstract class中,一般会定义一些抽象方法abstract method,抽象方法:只有方法名没有方法的具体实现。如果一个子类继承于该抽象类,要重写(overrode)父类的抽象方法。

DataLoader类的使用:

2.2 实现

使用到的python package

python package 目的
numpy 矩阵操作,对图像进行转置
skimage 图像处理,图像I/O,图像变换
matplotlib 图像的显示,可视化
os 一些文件查找操作
torch pytorch
torvision pytorch

源码

导入python包

import numpy as np
from skimage import io
from skimage import transform
import matplotlib.pyplot as plt
import os
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
from torchvision.utils import make_grid

第一步:

定义一个子类,继承Dataset类, 重写 __len()__, __getitem()__ 方法。

细节:

1.数据集中一个一样的表示:采用字典的形式sample = {'image': image, 'label': label}。

2.图像的读取:采用skimage.io进行读取,读取之后的结果为numpy.ndarray形式。

3.图像变换:transform参数

# step1: 定义MyDataset类, 继承Dataset, 重写抽象方法:__len()__, __getitem()__
class MyDataset(Dataset):

 def __init__(self, root_dir, names_file, transform=None):
 self.root_dir = root_dir
 self.names_file = names_file
 self.transform = transform
 self.size = 0
 self.names_list = []

 if not os.path.isfile(self.names_file):
  print(self.names_file + 'does not exist!')
 file = open(self.names_file)
 for f in file:
  self.names_list.append(f)
  self.size += 1

 def __len__(self):
 return self.size

 def __getitem__(self, idx):
 image_path = self.root_dir + self.names_list[idx].split(' ')[0]
 if not os.path.isfile(image_path):
  print(image_path + 'does not exist!')
  return None
 image = io.imread(image_path) # use skitimage
 label = int(self.names_list[idx].split(' ')[1])

 sample = {'image': image, 'label': label}
 if self.transform:
  sample = self.transform(sample)

 return sample

第二步

实例化一个对象,并读取和显示数据集

train_dataset = MyDataset(root_dir='./data/train',
    names_file='./data/train/train.txt',
    transform=None)

plt.figure()
for (cnt,i) in enumerate(train_dataset):
 image = i['image']
 label = i['label']

 ax = plt.subplot(4, 4, cnt+1)
 ax.axis('off')
 ax.imshow(image)
 ax.set_title('label {}'.format(label))
 plt.pause(0.001)

 if cnt == 15:
 break

只显示了部分数据,前部分全是cat

第三步(可选 optional)

对数据集进行变换:一般收集到的图像大小尺寸,亮度等存在差异,变换的目的就是使得数据归一化。另一方面,可以通过变换进行数据增加data argument

关于pytorch中的变换transforms,请参考该系列之前的文章

由于数据集中样本采用字典dicts形式表示。 因此不能直接调用torchvision.transofrms中的方法。

本实验只进行尺寸归一化Resize, 数据类型变换ToTensor操作。

Resize

# # 变换Resize
class Resize(object):

 def __init__(self, output_size: tuple):
 self.output_size = output_size

 def __call__(self, sample):
 # 图像
 image = sample['image']
 # 使用skitimage.transform对图像进行缩放
 image_new = transform.resize(image, self.output_size)
 return {'image': image_new, 'label': sample['label']}

ToTensor

# # 变换ToTensor
class ToTensor(object):

 def __call__(self, sample):
 image = sample['image']
 image_new = np.transpose(image, (2, 0, 1))
 return {'image': torch.from_numpy(image_new),
  'label': sample['label']}

第四步: 对整个数据集应用变换

细节: transformers.Compose() 将不同的几个组合起来。先进行Resize, 再进行ToTensor

# 对原始的训练数据集进行变换
transformed_trainset = MyDataset(root_dir='./data/train',
    names_file='./data/train/train.txt',
    transform=transforms.Compose(
    [Resize((224,224)),
    ToTensor()]
    ))

第五步: 使用DataLoader进行包装

为何要使用DataLoader?

① 深度学习的输入是mini_batch形式

② 样本加载时候可能需要随机打乱顺序,shuffle操作

③ 样本加载需要采用多线程

pytorch提供的DataLoader封装了上述的功能,这样使用起来更方便。

# 使用DataLoader可以利用多线程,batch,shuffle等
trainset_dataloader = DataLoader(dataset=transformed_trainset,
     batch_size=4,
     shuffle=True,
     num_workers=4)

可视化:

def show_images_batch(sample_batched):
 images_batch, labels_batch = \
 sample_batched['image'], sample_batched['label']
 grid = make_grid(images_batch)
 plt.imshow(grid.numpy().transpose(1, 2, 0))


# sample_batch: Tensor , NxCxHxW
plt.figure()
for i_batch, sample_batch in enumerate(trainset_dataloader):
 show_images_batch(sample_batch)
 plt.axis('off')
 plt.ioff()
 plt.show()


plt.show()

通过DataLoader包装之后,样本以min_batch形式输出,而且进行了随机打乱顺序。

至此,自定义数据集的完整流程已实现,test, val集只需要改路径即可。

补充

更简单的方法

上述继承Dataset, 重写 __len()__, __getitem() 是通用的方法,过程相对繁琐。对于简单的分类数据集,pytorch中提供了更简便的方式——ImageFolder。

如果每种类别的样本放在各自的文件夹中,则可以直接使用ImageFolder。

仍然以cat, dog 二分类数据集为例:

文件结构:



Code

import torch
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
import matplotlib.pyplot as plt
import numpy as np


# https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

# data_transform = transforms.Compose([
#  transforms.RandomResizedCrop(224),
#  transforms.RandomHorizontalFlip(),
#  transforms.ToTensor(),
#  transforms.Normalize(mean=[0.485, 0.456, 0.406],
#       std=[0.229, 0.224, 0.225])
# ])

data_transform = transforms.Compose([
 transforms.Resize((224,224)),
 transforms.RandomHorizontalFlip(),
 transforms.ToTensor(),

])

train_dataset = datasets.ImageFolder(root='./data/train',transform=data_transform)
train_dataloader = DataLoader(dataset=train_dataset,
        batch_size=4,
        shuffle=True,
        num_workers=4)


def show_batch_images(sample_batch):
 labels_batch = sample_batch[1]
 images_batch = sample_batch[0]

 for i in range(4):
  label_ = labels_batch[i].item()
  image_ = np.transpose(images_batch[i], (1, 2, 0))
  ax = plt.subplot(1, 4, i + 1)
  ax.imshow(image_)
  ax.set_title(str(label_))
  ax.axis('off')
  plt.pause(0.01)


plt.figure()
for i_batch, sample_batch in enumerate(train_dataloader):
 show_batch_images(sample_batch)

 plt.show()

由于 train 目录下只有2个文件夹,分别为cat, dog, 因此ImageFolder安装顺序对cat使用标签0, dog使用标签1。

End

参考:

https://pytorch.org/docs/stable/data.html

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

到此这篇关于pytorch学习教程之自定义数据集的文章就介绍到这了,更多相关pytorch自定义数据集内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中文件路径常用操作总结

    Python中文件路径常用操作总结

    这篇文章主要为大家详细介绍了Python中文件路径常用操作的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以学习一下
    2023-11-11
  • numpy中的nan和inf,及其批量判别、替换方式

    numpy中的nan和inf,及其批量判别、替换方式

    在Numpy中,NaN表示非数值,Inf表示无穷大,NaN与任何值计算都是NaN,Inf与0相乘是NaN,其余情况下与Inf运算仍为Inf,可以使用np.isnan(), np.isinf(), np.isneginf(), np.isposinf(), np.isfinite()等函数进行批量判别,返回布尔值数组
    2024-09-09
  • TensorFlow基于MNIST数据集实现车牌识别(初步演示版)

    TensorFlow基于MNIST数据集实现车牌识别(初步演示版)

    这篇文章主要介绍了TensorFlow基于MNIST数据集实现车牌识别(初步演示版),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python日期相关操作实例小结

    python日期相关操作实例小结

    这篇文章主要介绍了python日期相关操作,结合实例形式总结分析了Python针对日期时间的获取、转换、运算等相关操作技巧,需要的朋友可以参考下
    2019-06-06
  • Python遍历zip文件输出名称时出现乱码问题的解决方法

    Python遍历zip文件输出名称时出现乱码问题的解决方法

    这篇文章主要介绍了Python遍历zip文件输出名称时出现乱码问题的解决方法,实例分析了Python乱码的出现的原因与相应的解决方法,需要的朋友可以参考下
    2015-04-04
  • Python Flask 上传文件测试示例

    Python Flask 上传文件测试示例

    这篇文章主要为大家介绍了Python Flask 上传文件测试的方法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-07-07
  • Python常用爬虫代码总结方便查询

    Python常用爬虫代码总结方便查询

    今天小编就为大家分享一篇关于Python常用爬虫代码总结方便查询,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-02-02
  • python中实现json数据和类对象相互转化的四种方式

    python中实现json数据和类对象相互转化的四种方式

    在日常的软件测试过程中,测试数据的构造是一个占比非常大的活动,对于测试数据的构造,分为结构化的数据构造方式和非结构化的数据构造方式,此篇文章,会通过4种方式来展示json数据与python的类对象相互转化,需要的朋友可以参考下
    2024-07-07
  • python判断变量是否是None的三种写法总结

    python判断变量是否是None的三种写法总结

    代码中经常会有变量是否为None的判断,这篇文章给大家总结了三种判断变量是否是none的写法,文中通过代码示例介绍的非常详细,需要的朋友可以参考下
    2023-12-12
  • Python爬虫获取国外大桥排行榜数据清单

    Python爬虫获取国外大桥排行榜数据清单

    这篇文章主要介绍了Python爬虫获取国外大桥排行榜数据清单,文章通过PyQuery 解析框架展开全文详细内容,需要的小伙伴可以参考一下
    2022-05-05

最新评论