Python 多进程、多线程效率对比

 更新时间:2020年11月19日 10:32:14   作者:massquantity  
这篇文章主要介绍了Python 多进程、多线程的效率对比,帮助大家选择适合的技术,感兴趣的朋友可以了解下

Python 界有条不成文的准则: 计算密集型任务适合多进程,IO 密集型任务适合多线程。本篇来作个比较。

通常来说多线程相对于多进程有优势,因为创建一个进程开销比较大,然而因为在 python 中有 GIL 这把大锁的存在,导致执行计算密集型任务时多线程实际只能是单线程。而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的 GIL,互不干扰。

而在 IO 密集型任务中,CPU 时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间 GIL 会被释放,因而就可以使用真正的多线程。

以上是理论,下面做一个简单的模拟测试: 大量计算用 math.sin() + math.cos() 来代替,IO 密集型用 time.sleep() 来模拟。 在 Python 中有多种方式可以实现多进程和多线程,这里一并纳入看看是否有效率差异:

  1. 多进程: joblib.multiprocessing, multiprocessing.Pool, multiprocessing.apply_async, concurrent.futures.ProcessPoolExecutor
  2. 多线程: joblib.threading, threading.Thread, concurrent.futures.ThreadPoolExecutor
from multiprocessing import Pool
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time, os, math
from joblib import Parallel, delayed, parallel_backend


def f_IO(a): # IO 密集型
 time.sleep(5)

def f_compute(a): # 计算密集型
 for _ in range(int(1e7)):
  math.sin(40) + math.cos(40)
 return

def normal(sub_f):
 for i in range(6):
  sub_f(i)
 return

def joblib_process(sub_f):
 with parallel_backend("multiprocessing", n_jobs=6):
  res = Parallel()(delayed(sub_f)(j) for j in range(6))
 return


def joblib_thread(sub_f):
 with parallel_backend('threading', n_jobs=6):
  res = Parallel()(delayed(sub_f)(j) for j in range(6))
 return

def mp(sub_f):
 with Pool(processes=6) as p:
  res = p.map(sub_f, list(range(6)))
 return

def asy(sub_f):
 with Pool(processes=6) as p:
  result = []
  for j in range(6):
   a = p.apply_async(sub_f, args=(j,))
   result.append(a)
  res = [j.get() for j in result]

def thread(sub_f):
 threads = []
 for j in range(6):
  t = Thread(target=sub_f, args=(j,))
  threads.append(t)
  t.start()
 for t in threads:
  t.join()

def thread_pool(sub_f):
 with ThreadPoolExecutor(max_workers=6) as executor:
  res = [executor.submit(sub_f, j) for j in range(6)]

def process_pool(sub_f):
 with ProcessPoolExecutor(max_workers=6) as executor:
  res = executor.map(sub_f, list(range(6)))

def showtime(f, sub_f, name):
 start_time = time.time()
 f(sub_f)
 print("{} time: {:.4f}s".format(name, time.time() - start_time))

def main(sub_f):
 showtime(normal, sub_f, "normal")
 print()
 print("------ 多进程 ------")
 showtime(joblib_process, sub_f, "joblib multiprocess")
 showtime(mp, sub_f, "pool")
 showtime(asy, sub_f, "async")
 showtime(process_pool, sub_f, "process_pool")
 print()
 print("----- 多线程 -----")
 showtime(joblib_thread, sub_f, "joblib thread")
 showtime(thread, sub_f, "thread")
 showtime(thread_pool, sub_f, "thread_pool")


if __name__ == "__main__":
 print("----- 计算密集型 -----")
 sub_f = f_compute
 main(sub_f)
 print()
 print("----- IO 密集型 -----")
 sub_f = f_IO
 main(sub_f)

结果:

----- 计算密集型 -----
normal time: 15.1212s

------ 多进程 ------
joblib multiprocess time: 8.2421s
pool time: 8.5439s
async time: 8.3229s
process_pool time: 8.1722s

----- 多线程 -----
joblib thread time: 21.5191s
thread time: 21.3865s
thread_pool time: 22.5104s



----- IO 密集型 -----
normal time: 30.0305s

------ 多进程 ------
joblib multiprocess time: 5.0345s
pool time: 5.0188s
async time: 5.0256s
process_pool time: 5.0263s

----- 多线程 -----
joblib thread time: 5.0142s
thread time: 5.0055s
thread_pool time: 5.0064s

上面每一方法都统一创建6个进程/线程,结果是计算密集型任务中速度:多进程 > 单进程/线程 > 多线程, IO 密集型任务速度: 多线程 > 多进程 > 单进程/线程。

以上就是Python 多进程、多线程效率比较的详细内容,更多关于Python 多进程、多线程的资料请关注脚本之家其它相关文章!

相关文章

  • python实现mysql的单引号字符串过滤方法

    python实现mysql的单引号字符串过滤方法

    这篇文章主要介绍了python实现mysql的单引号字符串过滤方法,以一个较为详细的实例形式分析了Python针对MySQL的操作及字符串过滤的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-11-11
  • python读写ini文件示例(python读写文件)

    python读写ini文件示例(python读写文件)

    项目用到数据库,多个地方使用,不能硬编码。ython支持ini文件的读取,就在项目中使用了ini文件,下面是示例
    2014-03-03
  • 如何更改jupyter的默认文件路径

    如何更改jupyter的默认文件路径

    这篇文章主要介绍了如何更改jupyter的默认文件路径问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-12-12
  • Python pytest.main()运行测试用例

    Python pytest.main()运行测试用例

    这篇文章主要介绍了Python pytest.main()运行测试用例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2022-12-12
  • Python实现求取表格文件某个区域内单元格的最大值

    Python实现求取表格文件某个区域内单元格的最大值

    这篇文章主要介绍基于Python语言,基于Excel表格文件内某一列的数据,计算这一列数据在每一个指定数量的行的范围内(例如每一个4行的范围内)的区间最大值的方法,需要的朋友可以参考下
    2023-08-08
  • Python使用matplotlib绘制余弦的散点图示例

    Python使用matplotlib绘制余弦的散点图示例

    这篇文章主要介绍了Python使用matplotlib绘制余弦的散点图,涉及Python操作matplotlib的基本技巧与散点的设置方法,需要的朋友可以参考下
    2018-03-03
  • 基于python goto的正确用法说明

    基于python goto的正确用法说明

    这篇文章主要介绍了基于python goto的正确用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python中的装饰器类详解

    Python中的装饰器类详解

    Python 装饰器在很多情况下是一个非常有用的工具,它们可以用于修改或增强函数或类的行为,本篇文章将深入探讨如何在 Python 中使用类装饰器
    2023-06-06
  • python和ruby,我选谁?

    python和ruby,我选谁?

    本文给大家对比了下python和Ruby的异同以及各自的优缺点等,向大家展示了python与Ruby的资源以及学习曲线,非常适合在此两种语言中犹豫不决的小伙伴,希望大家能够喜欢
    2017-09-09
  • wxPython电子表格功能wx.grid实例教程

    wxPython电子表格功能wx.grid实例教程

    这篇文章主要介绍了wxPython电子表格功能wx.grid实例教程,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11

最新评论