使用OpenCV校准鱼眼镜头的方法

 更新时间:2020年11月26日 10:54:41   作者:小白学视觉  
这篇文章主要介绍了使用OpenCV校准鱼眼镜头的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

01.简介

当我们使用的鱼眼镜头视角大于160°时,OpenCV中用于校准镜头“经典”方法的效果可能就不是和理想了。即使我们仔细遵循OpenCV文档中的步骤,也可能会得到下面这个奇奇怪怪的照片:

如果小伙伴也遇到了类似情况,那么这篇文章可能会对大家有一定的帮助。

从3.0版开始,OpenCV包含了cv2.fisheye可以很好地处理鱼眼镜头校准的软件包。但是,该模块没有针对读者的相关的教程。

02.相机参数获取

校准镜头其实只需要下面2个步骤。

  • 利用OpenCV计算镜头的2个固有参数。OpenCV称它们为K和D,我们只需要知道它们是numpy数组外即可。
  • 通过K和D对图像进行去畸变矫正。

计算K和D

  • 下载棋盘格图案并将其打印在纸上(字母或A4尺寸)。大家要尽量将这张纸粘在坚硬且平坦的物体表面,例如一块硬纸板上。因为这里的关键是直线必须是直线
  • 将图案放在相机前面拍摄一些图像,图案要取在不同的位置和角度。这里的关键是图案需要以不同的方式出现失真(以便OpenCV尽可能多地了解镜头相关参数)。

我们先将这些图片保存在JPG文件夹中。

现在我们只需要将此Python脚本片段复制到calibrate.py先前保存这些图像的文件夹中的文件中,就可以对其进行命名。

import cv2
assert cv2.__version__[0] == '3', 'The fisheye module requires opencv version >= 3.0.0'
import numpy as np
import os
import glob
CHECKERBOARD = (6,9)
subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
_img_shape = None
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('*.jpg')
for fname in images:
  img = cv2.imread(fname)
  if _img_shape == None:
    _img_shape = img.shape[:2]
  else:
    assert _img_shape == img.shape[:2], "All images must share the same size."
  gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  # Find the chess board corners
  ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
  # If found, add object points, image points (after refining them)
  if ret == True:
    objpoints.append(objp)
    cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria)
    imgpoints.append(corners)
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
rms, _, _, _, _ = \
  cv2.fisheye.calibrate(
    objpoints,
    imgpoints,
    gray.shape[::-1],
    K,
    D,
    rvecs,
    tvecs,
    calibration_flags,
    (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
  )
print("Found " + str(N_OK) + " valid images for calibration")
print("DIM=" + str(_img_shape[::-1]))
print("K=np.array(" + str(K.tolist()) + ")")
print("D=np.array(" + str(D.tolist()) + ")")

运行python calibrate.py。如果一切顺利,脚本将输出如下内容:

Found 36 images for calibration
DIM=(1600, 1200)
K=np.array([[781.3524863867165, 0.0, 794.7118000552183], [0.0, 779.5071163774452, 561.3314451453386], [0.0, 0.0, 1.0]])
D=np.array([[-0.042595202508066574], [0.031307765215775184], [-0.04104704724832258], [0.015343014605793324]])

03.图像畸变矫正

获得K和D后,我们可以对以下情况获得的图像进行失真矫正:我们需要取消失真的图像与校准期间捕获的图像具有相同的尺寸。也可以将边缘周围的某些区域裁剪掉,来保证使未失真图像的整洁。通过undistort.py使用以下python代码创建文件:

DIM=XXX
K=np.array(YYY)
D=np.array(ZZZ)
def undistort(img_path):
  img = cv2.imread(img_path)
  h,w = img.shape[:2]
  map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2)
  undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
  cv2.imshow("undistorted", undistorted_img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()
if __name__ == '__main__':
  for p in sys.argv[1:]:
    undistort(p)

现在运行python undistort.py file_to_undistort.jpg。

矫正前

矫正后

如果大家仔细观察,可能会注意到一个问题:原始图像中的大部分会在此过程中被裁剪掉。例如,图像左侧的橙色RC汽车只有一半的车轮保持在未变形的图像中。实际上,原始图像中约有30%的像素丢失了。小伙伴们可以思考思考如果我们想找回丢失的像素该这么办呢?

到此这篇关于使用OpenCV校准鱼眼镜头的方法的文章就介绍到这了,更多相关OpenCV校准鱼眼镜内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python pywin32实现word与Excel的处理

    Python pywin32实现word与Excel的处理

    这篇文章主要介绍了Python pywin32实现word与Excel的处理,pywin32处理Word大多数用于格式转换,因为一般读写操作都可以借助python-docx实现,除非真的有特殊要求,但大部分企业对Wrod操作不会有太多复杂需求
    2022-08-08
  • python检测lvs real server状态

    python检测lvs real server状态

    这篇文章主要介绍了用python检测lvs real server状态的示例,大家参考使用吧
    2014-01-01
  • Python pandas DataFrame基础运算及空值填充详解

    Python pandas DataFrame基础运算及空值填充详解

    pandas除了可以drop含有空值的数据之外,当然也可以用来填充空值,下面这篇文章主要给大家介绍了关于Python pandas DataFrame基础运算及空值填充的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-07-07
  • tensorflow-gpu2.3版本安装步骤

    tensorflow-gpu2.3版本安装步骤

    这篇文章主要介绍了tensorflow-gpu2.3版本安装步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python中的字符串占位符的"{0:2}"

    python中的字符串占位符的"{0:2}"

    这篇文章主要介绍了python中的字符串占位符的"{0:2}",具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • 举例讲解Python中的list列表数据结构用法

    举例讲解Python中的list列表数据结构用法

    这篇文章主要介绍了Python中的list列表数据结构用法,列表是Python内置的六种集合类数据类型中最常见的之一,需要的朋友可以参考下
    2016-03-03
  • PyTorch的深度学习入门教程之构建神经网络

    PyTorch的深度学习入门教程之构建神经网络

    这篇文章主要介绍了PyTorch的深度学习入门教程之构建神经网络,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • 基于PyQt5制作一个猜数字小游戏

    基于PyQt5制作一个猜数字小游戏

    这篇文章主要为大家介绍了如何用Python中的PyQt5模块制作一个带GUI的猜数字小游戏,文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-03-03
  • opencv与numpy的图像基本操作

    opencv与numpy的图像基本操作

    这篇文章主要介绍了opencv与numpy的图像基本操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • 使用python实现滑动验证码功能

    使用python实现滑动验证码功能

    这篇文章主要介绍了使用python实现滑动验证码功能,本文通过示例代码给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-08-08

最新评论