Prometheus开发中间件Exporter过程详解

 更新时间:2020年11月30日 09:19:05   作者:-零  
这篇文章主要介绍了Prometheus开发中间件Exporter过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

Prometheus 为开发这提供了客户端工具,用于为自己的中间件开发Exporter,对接Prometheus 。

目前支持的客户端

以go为例开发自己的Exporter

依赖包的引入

工程结构

[root@node1 data]# tree exporter/
exporter/
├── collector
│ └── node.go
├── go.mod
└── main.go

引入依赖包

require (
  github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
  github.com/modern-go/reflect2 v1.0.1 // indirect
  github.com/prometheus/client_golang v1.1.0
    //借助gopsutil 采集主机指标
  github.com/shirou/gopsutil v0.0.0-20190731134726-d80c43f9c984
)

main.go

package main

import (
  "cloud.io/exporter/collector"
  "fmt"
  "github.com/prometheus/client_golang/prometheus"
  "github.com/prometheus/client_golang/prometheus/promhttp"
  "net/http"
)

func init() {
   //注册自身采集器
  prometheus.MustRegister(collector.NewNodeCollector())
}
func main() {
  http.Handle("/metrics", promhttp.Handler())
  if err := http.ListenAndServe(":8080", nil); err != nil {
    fmt.Printf("Error occur when start server %v", err)
  }
}

为了能看清结果我将默认采集器注释,位置registry.go

func init() {
  //MustRegister(NewProcessCollector(ProcessCollectorOpts{}))
  //MustRegister(NewGoCollector())
}

/collector/node.go

代码中涵盖了Counter、Gauge、Histogram、Summary四种情况,一起混合使用的情况,具体的说明见一下代码中。

package collector

import (
  "github.com/prometheus/client_golang/prometheus"
  "github.com/shirou/gopsutil/host"
  "github.com/shirou/gopsutil/mem"
  "runtime"
  "sync"
)

var reqCount int32
var hostname string
type NodeCollector struct {
  requestDesc  *prometheus.Desc  //Counter
  nodeMetrics   nodeStatsMetrics //混合方式 
  goroutinesDesc *prometheus.Desc  //Gauge
  threadsDesc  *prometheus.Desc //Gauge
  summaryDesc  *prometheus.Desc //summary
  histogramDesc *prometheus.Desc  //histogram
  mutex     sync.Mutex
}
//混合方式数据结构
type nodeStatsMetrics []struct {
  desc  *prometheus.Desc
  eval  func(*mem.VirtualMemoryStat) float64
  valType prometheus.ValueType
}

//初始化采集器
func NewNodeCollector() prometheus.Collector {
  host,_:= host.Info()
  hostname = host.Hostname
  return &NodeCollector{
    requestDesc: prometheus.NewDesc(
      "total_request_count",
      "请求数",
      []string{"DYNAMIC_HOST_NAME"}, //动态标签名称
      prometheus.Labels{"STATIC_LABEL1":"静态值可以放在这里","HOST_NAME":hostname}),
    nodeMetrics: nodeStatsMetrics{
      {
        desc: prometheus.NewDesc(
          "total_mem",
          "内存总量",
          nil, nil),
        valType: prometheus.GaugeValue,
        eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Total) / 1e9 },
      },
      {
        desc: prometheus.NewDesc(
          "free_mem",
          "内存空闲",
          nil, nil),
        valType: prometheus.GaugeValue,
        eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Free) / 1e9 },
      },

    },
    goroutinesDesc:prometheus.NewDesc(
      "goroutines_num",
      "协程数.",
      nil, nil),
    threadsDesc: prometheus.NewDesc(
      "threads_num",
      "线程数",
      nil, nil),
    summaryDesc: prometheus.NewDesc(
      "summary_http_request_duration_seconds",
      "summary类型",
      []string{"code", "method"},
      prometheus.Labels{"owner": "example"},
    ),
    histogramDesc: prometheus.NewDesc(
      "histogram_http_request_duration_seconds",
      "histogram类型",
      []string{"code", "method"},
      prometheus.Labels{"owner": "example"},
    ),
  }
}

// Describe returns all descriptions of the collector.
//实现采集器Describe接口
func (n *NodeCollector) Describe(ch chan<- *prometheus.Desc) {
  ch <- n.requestDesc
  for _, metric := range n.nodeMetrics {
    ch <- metric.desc
  }
  ch <- n.goroutinesDesc
  ch <- n.threadsDesc
  ch <- n.summaryDesc
  ch <- n.histogramDesc
}
// Collect returns the current state of all metrics of the collector.
//实现采集器Collect接口,真正采集动作
func (n *NodeCollector) Collect(ch chan<- prometheus.Metric) {
  n.mutex.Lock()
  ch <- prometheus.MustNewConstMetric(n.requestDesc,prometheus.CounterValue,0,hostname)
  vm, _ := mem.VirtualMemory()
  for _, metric := range n.nodeMetrics {
    ch <- prometheus.MustNewConstMetric(metric.desc, metric.valType, metric.eval(vm))
  }

  ch <- prometheus.MustNewConstMetric(n.goroutinesDesc, prometheus.GaugeValue, float64(runtime.NumGoroutine()))

  num, _ := runtime.ThreadCreateProfile(nil)
  ch <- prometheus.MustNewConstMetric(n.threadsDesc, prometheus.GaugeValue, float64(num))

  //模拟数据
  ch <- prometheus.MustNewConstSummary(
    n.summaryDesc,
    4711, 403.34,
    map[float64]float64{0.5: 42.3, 0.9: 323.3},
    "200", "get",
  )

  //模拟数据
  ch <- prometheus.MustNewConstHistogram(
      n.histogramDesc,
      4711, 403.34,
      map[float64]uint64{25: 121, 50: 2403, 100: 3221, 200: 4233},
      "200", "get",
    )
  n.mutex.Unlock()
}

执行的结果http://127.0.0.1:8080/metrics

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python数据类型最全知识总结

    Python数据类型最全知识总结

    学习一门语言,往往都是从Hello World开始. 但是笔者认为,在一个黑框框中输出一个“你好,世界”并没有什么了不起,要看透事物的本质,熟悉一门语言,就要了解其底层,就是我们常常说的基础,本篇从python中的数据类型开始,需要的朋友可以参考下
    2021-05-05
  • python爬虫获取京东手机图片的图文教程

    python爬虫获取京东手机图片的图文教程

    下面小编就为大家分享一篇python爬虫获取京东手机图片的图文教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2017-12-12
  • Python引用类型和值类型的区别与使用解析

    Python引用类型和值类型的区别与使用解析

    这篇文章主要介绍了Python引用类型和值类型的区别与使用解析,需要的朋友可以参考下
    2017-10-10
  • Python实现FIFO缓存置换算法

    Python实现FIFO缓存置换算法

    这篇文章主要为大家详细介绍了Python实现FIFO(先进先出)缓存置换算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-05-05
  • Python日志模块logging的使用方法总结

    Python日志模块logging的使用方法总结

    这篇文章主要分享的是Python日志模块logging的使用方法总结,ogging模块默认级别是WARNING,意味着只会追踪该级别以上的事件,除非更改日志配置,想了解更多相关资料的小伙伴可以参考下面文章内容
    2022-05-05
  • python 初始化一个定长的数组实例

    python 初始化一个定长的数组实例

    今天小编就为大家分享一篇python 初始化一个定长的数组实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python Flask JinJa2 语法使用示例详解

    Python Flask JinJa2 语法使用示例详解

    这篇文章主要为大家介绍了Python Flask JinJa2 语法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • Pandas常用的读取和保存数据的函数使用(csv,mysql,json,excel)

    Pandas常用的读取和保存数据的函数使用(csv,mysql,json,excel)

    本文主要介绍了Pandas常用的读取和保存数据的函数使用,主要包括csv,mysql,json,excel这几种方式,具有一定的参考价值,感兴趣的可以了解一下
    2022-01-01
  • Python中getservbyport和getservbyname函数的用法大全

    Python中getservbyport和getservbyname函数的用法大全

    在Python的网络编程中,getservbyport()函数和getservbyname()函数是socket模块中的两个函数,因此在使用这两个函数时,需要导入socket模块,这篇文章主要介绍了Python中getservbyport和getservbyname函数的用法,需要的朋友可以参考下
    2023-01-01
  • python将pandas datarame保存为txt文件的实例

    python将pandas datarame保存为txt文件的实例

    今天小编就为大家分享一篇python将pandas datarame保存为txt文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02

最新评论