python 检测图片是否有马赛克

 更新时间:2020年12月01日 11:16:57   作者:会武术之白猫  
这篇文章主要介绍了python 如何检测图片是否有马赛克,帮助大家更好的理解和使用python处理图片,感兴趣的朋友可以了解下

首先是Canny边缘检测,将图片的边缘检测出来,参考博客https://www.cnblogs.com/techyan1990/p/7291771.html

原理讲的很清晰,给原博主一个赞

边缘检测之后按照正方形检索来判定是否是马赛克内容

原理知晓了之后就很好做了

话说MATLAB转化为python的过程还是很有趣的

from PIL import Image
import numpy as np
import math
import warnings

#算法来源,博客https://www.cnblogs.com/techyan1990/p/7291771.html和https://blog.csdn.net/zhancf/article/details/49736823
highhold=200#高阈值
lowhold=40#低阈值
warnings.filterwarnings("ignore")
demo=Image.open("noise_check//23.jpg")
im=np.array(demo.convert('L'))#灰度化矩阵
print(im.shape)
print(im.dtype)
height=im.shape[0]#尺寸
width=im.shape[1]
gm=[[0 for i in range(width)]for j in range(height)]#梯度强度
gx=[[0 for i in range(width)]for j in range(height)]#梯度x
gy=[[0 for i in range(width)]for j in range(height)]#梯度y
theta=0#梯度方向角度360度
dirr=[[0 for i in range(width)]for j in range(height)]#0,1,2,3方位判定值
highorlow=[[0 for i in range(width)]for j in range(height)]#强边缘、弱边缘、忽略判定值2,1,0
rm=np.array([[0 for i in range(width)]for j in range(height)])#输出矩阵
#高斯滤波平滑,3x3
for i in range(1,height-1,1):
 for j in range(1,width-1,1):
 rm[i][j]=im[i-1][j-1]*0.0924+im[i-1][j]*0.1192+im[i-1][j+1]*0.0924+im[i][j-1]*0.1192+im[i][j]*0.1538+im[i][j+1]*0.1192+im[i+1][j-1]*0.0924+im[i+1][j]*0.1192+im[i+1][j+1]*0.0924
for i in range(1,height-1,1):#梯度强度和方向
 for j in range(1,width-1,1):
 gx[i][j]=-rm[i-1][j-1]+rm[i-1][j+1]-2*rm[i][j-1]+2*rm[i][j+1]-rm[i+1][j-1]+rm[i+1][j+1]
 gy[i][j]=rm[i-1][j-1]+2*rm[i-1][j]+rm[i-1][j+1]-rm[i+1][j-1]-2*rm[i+1][j]-rm[i+1][j+1]
 gm[i][j]=pow(gx[i][j]*gx[i][j]+gy[i][j]*gy[i][j],0.5)
 theta=math.atan(gy[i][j]/gx[i][j])*180/3.1415926
 if theta>=0 and theta<45:
  dirr[i][j]=2
 elif theta>=45 and theta<90:
  dirr[i][j]=3
 elif theta>=90 and theta<135:
  dirr[i][j]=0
 else:
  dirr[i][j]=1
for i in range(1,height-1,1):#非极大值抑制,双阈值监测
 for j in range(1,width-1,1):
 NW=gm[i-1][j-1]
 N=gm[i-1][j]
 NE=gm[i-1][j+1]
 W=gm[i][j-1]
 E=gm[i][j+1]
 SW=gm[i+1][j-1]
 S=gm[i+1][j]
 SE=gm[i+1][j+1]
 if dirr[i][j]==0:
  d=abs(gy[i][j]/gx[i][j])
  gp1=(1-d)*E+d*NE
  gp2=(1-d)*W+d*SW
 elif dirr[i][j]==1:
  d=abs(gx[i][j]/gy[i][j])
  gp1=(1-d)*N+d*NE
  gp2=(1-d)*S+d*SW
 elif dirr[i][j]==2:
  d=abs(gx[i][j]/gy[i][j])
  gp1=(1-d)*N+d*NW
  gp2=(1-d)*S+d*SE
 elif dirr[i][j]==3:
  d=abs(gy[i][j]/gx[i][j])
  gp1=(1-d)*W+d*NW
  gp2=(1-d)*E+d*SE
 if gm[i][j]>=gp1 and gm[i][j]>=gp2:
  if gm[i][j]>=highhold:
  highorlow[i][j]=2
  rm[i][j]=1
  elif gm[i][j]>=lowhold:
  highorlow[i][j]=1
  else:
  highorlow[i][j]=0
  rm[i][j]=0
 else:
  highorlow[i][j]=0
  rm[i][j]=0
for i in range(1,height-1,1):#抑制孤立低阈值点
 for j in range(1,width-1,1):
 if highorlow[i][j]==1 and (highorlow[i-1][j-1]==2 or highorlow[i-1][j]==2 or highorlow[i-1][j+1]==2 or highorlow[i][j-1]==2 or highorlow[i][j+1]==2 or highorlow[i+1][j-1]==2 or highorlow[i+1][j]==2 or highorlow[i+1][j+1]==2):
  #highorlow[i][j]=2
  rm[i][j]=1
#img=Image.fromarray(rm)#矩阵化为图片
#img.show()
#正方形法判定是否有马赛克
value=35
lowvalue=16
imgnumber=[0 for i in range(value)]
for i in range(1,height-1,1):#性价比高的8点判定法
 for j in range(1,width-1,1):
 for k in range(lowvalue,value):
  count=0
  if i+k-1>=height or j+k-1>=width:continue
  if rm[i][j]!=0:count+=1#4个顶点
  if rm[i+k-1][j]!=0:count+=1
  if rm[i][j+k-1]!=0:count+=1
  if rm[i+k-1][j+k-1]!=0:count+=1
  e=(k-1)//2
  if rm[i+e][j]!=0:count+=1
  if rm[i][j+e]!=0:count+=1
  if rm[i+e][j+k-1]!=0:count+=1
  if rm[i+k-1][j+e]!=0:count+=1
  if count>=6:
  imgnumber[k]+=1
for i in range(lowvalue,value):
 print("length:{} number:{}".format(i,imgnumber[i]))

结果图可以上一下了

可以看出在一定程度上能够检测出马赛克内容

原图

边缘图案

正方形数量

以上就是python 检测图片是否有马赛克的详细内容,更多关于python 检测图片马赛克的资料请关注脚本之家其它相关文章!

相关文章

  • Python numpy线性代数用法实例解析

    Python numpy线性代数用法实例解析

    这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • 国产麒麟系统kylin部署python项目详细步骤

    国产麒麟系统kylin部署python项目详细步骤

    这篇文章主要给大家介绍了关于国产麒麟系统kylin部署python项目的相关资料,文中通过代码示例介绍的非常详细,对大家的学习或者工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-09-09
  • Python matplotlib绘制实时数据动画

    Python matplotlib绘制实时数据动画

    Matplotlib作为Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。本文将利用Matplotlib库绘制实时数据动画,感兴趣的可以了解一下
    2022-03-03
  • python scrapy框架的日志文件问题

    python scrapy框架的日志文件问题

    这篇文章主要介绍了python scrapy框架的日志文件问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • 深入理解Python虚拟机中的Code obejct

    深入理解Python虚拟机中的Code obejct

    在本篇文章当中主要给大家深入介绍在 cpython 当中非常重要的一个数据结构 code object! 我们简单介绍了一下在 code object 当中有哪些字段以及这些字段的简单含义,在本篇文章当中将会举一些例子以便更加深入理解这些字段
    2023-04-04
  • python ChainMap 合并字典的实现步骤

    python ChainMap 合并字典的实现步骤

    这篇文章主要介绍了python ChainMap 合并字典的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • Python使用type关键字创建类步骤详解

    Python使用type关键字创建类步骤详解

    在本文里我们给读者们整理了关于Python如何使用type关键字创建类的相关知识点,需要的朋友们参考学习下。
    2019-07-07
  • Python+tkinter制作经典登录界面和点击事件

    Python+tkinter制作经典登录界面和点击事件

    Tkinter是 Python 标准 GUI 库,简称 “Tk”;从本质上来说,它是对 TCL/TK 工具包的一种 Python 接口封装。本文将利用tkinter制作一个经典的登录界面和点击事件,需要的可以参考一下
    2022-09-09
  • Python利用pandas和matplotlib实现绘制堆叠柱状图

    Python利用pandas和matplotlib实现绘制堆叠柱状图

    在数据可视化中,堆叠柱状图是一种常用的图表类型,它能够清晰地展示多个类别的数据,本文将演示如何使用 Python 的 pandas 和 matplotlib 库绘制优化的堆叠柱状图,需要的可以参考下
    2023-11-11
  • 十分钟教会你用Python处理CSV文件

    十分钟教会你用Python处理CSV文件

    大家都知道使用csv文件可以较容易地存储多行且列相同的数据,便于数据的读取与解析,也常用于自动化测试过程中的数据参数化,下面这篇文章主要给大家介绍了关于如何利用Python处理CSV文件的相关资料,需要的朋友可以参考下
    2022-06-06

最新评论