python 调整图片亮度的示例
更新时间:2020年12月03日 11:20:12 作者:未雨愁眸
这篇文章主要介绍了python 调整图片亮度的示例代码,帮助大家更好的利用python处理图片,感兴趣的朋友可以了解下
实现效果
实现代码
import matplotlib.pyplot as plt from skimage import io file_name='D:/2020121173119242.png' img=io.imread(file_name) Increment = -10.0 img = img * 1.0 I = (img[:, :, 0] + img[:, :, 1] + img[:, :, 2])/3.0 + 0.001 mask_1 = I > 128.0 r = img [:, :, 0] g = img [:, :, 1] b = img [:, :, 2] rhs = (r*128.0 - (I - 128.0) * 256.0) / (256.0 - I) ghs = (g*128.0 - (I - 128.0) * 256.0) / (256.0 - I) bhs = (b*128.0 - (I - 128.0) * 256.0) / (256.0 - I) rhs = rhs * mask_1 + (r * 128.0 / I) * (1 - mask_1) ghs = ghs * mask_1 + (g * 128.0 / I) * (1 - mask_1) bhs = bhs * mask_1 + (b * 128.0 / I) * (1 - mask_1) I_new = I + Increment - 128.0 mask_2 = I_new > 0.0 R_new = rhs + (256.0-rhs) * I_new / 128.0 G_new = ghs + (256.0-ghs) * I_new / 128.0 B_new = bhs + (256.0-bhs) * I_new / 128.0 R_new = R_new * mask_2 + (rhs + rhs * I_new/128.0) * (1-mask_2) G_new = G_new * mask_2 + (ghs + ghs * I_new/128.0) * (1-mask_2) B_new = B_new * mask_2 + (bhs + bhs * I_new/128.0) * (1-mask_2) Img_out = img * 1.0 Img_out[:, :, 0] = R_new Img_out[:, :, 1] = G_new Img_out[:, :, 2] = B_new Img_out = Img_out/255.0 # 饱和处理 mask_1 = Img_out < 0 mask_2 = Img_out > 1 Img_out = Img_out * (1-mask_1) Img_out = Img_out * (1-mask_2) + mask_2 plt.figure() plt.imshow(img/255.0) plt.axis('off') plt.figure(2) plt.imshow(Img_out) plt.axis('off') plt.figure(3) plt.imshow(I/255.0, plt.cm.gray) plt.axis('off') plt.show()
以上就是python 调整图片亮度的示例的详细内容,更多关于python 调整图片亮度的资料请关注脚本之家其它相关文章!
相关文章
深度理解Python中Class类、Object类、Type元类
本文主要介绍了深度理解Python中Class类、Object类、Type元类,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2023-06-06关于Django框架的关系模型序列化和一对多关系中的序列化解析
序列化的意思是把字典的形式转化成Json格式。当我们展示数据的时候需要使用,反序列化的话,就是Json转成字典形式,存储数据时候使用,需要的朋友可以参考下2023-05-05
最新评论