使用Python爬取Json数据的示例代码
更新时间:2020年12月07日 15:27:06 作者:pengjunlee
这篇文章主要介绍了使用Python爬取Json数据的示例代码,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
一年一度的双十一即将来临,临时接到了一个任务:统计某品牌数据银行中自己品牌分别在2017和2018的10月20日至10月31日之间不同时间段的AIPL(“认知”(Aware)、“兴趣”(Interest)、“购买”(Purchase)、“忠诚”(Loyalty))流转率。
使用Fiddler获取到目标地址为:
本文中以爬取其中的AI流转率数据为例。
该地址返回的响应内容为Json类型,其中红框标记的项即为AI流转率值:
实现代码如下:
import requests import json import csv # 爬虫地址 url = 'https://databank.yushanfang.com/api/ecapi?path=/databank/crowdFullLink/flowInfo&fromCrowdId=3312&beginTheDate=201810{}&endTheDate=201810{}&toCrowdIdList[0]=3312&toCrowdIdList[1]=3313&toCrowdIdList[2]=3314&toCrowdIdList[3]=3315' # 携带cookie进行访问 headers = { 'Host':'databank.yushanfang.com', 'Referer':'https://databank.yushanfang.com/', 'Connection':'keep-alive', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Safari/537.36', 'Cookie':'_tb_token_=iNkDeJLdM3MgvKjhsfdW; bs_n_lang=zh_CN; cna=aaj1EViI7x0CATo9kTKvjzgS; ck2=072de851f1c02d5c7bac555f64c5c66d; c_token=c74594b486f8de731e2608cb9526a3f2; an=5YWo5qOJ5pe25Luj5a6Y5pa55peX6Iiw5bqXOnpmeA%3D%3D; lg=true; sg=\"=19\"; lvc=sAhojs49PcqHQQ%3D%3D; isg=BPT0Md7dE_ic5Ie3Oa85RxaMxbLK3UqJMMiN6o5VjH8C-ZRDtt7aRXb3fXGEAVAP', } rows = [] for n in range(20, 31): row = [] row.append(n) for m in range (21, 32): if m < n + 1: row.append("") else: # 格式化请求地址,更换请求参数 reqUrl = url.format(n, m) # 打印本次请求地址 print(url) # 发送请求,获取响应结果 response = requests.get(url=reqUrl, headers=headers, verify=False) text = response.text # 打印本次请求响应内容 print(text) # 将响应内容转换为Json对象 jsonobj = json.loads(text) # 从Json对象获取想要的内容 toCntPercent = jsonobj['data']['interCrowdInfo'][1]['toCntPercent'] # 生成行数据 row.append(str(toCntPercent)+"%") # 保存行数据 rows.append(row) # 生成Excel表头 header = ['AI流转率', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31'] # 将表头数据和爬虫数据导出到Excel文件 with open('D:\\res\\pachong\\tmall.csv', 'w', encoding='gb18030') as f : f_csv = csv.writer(f) f_csv.writerow(header) f_csv.writerows(rows)
import csv import json import ssl import urllib.request # 爬虫地址 url = 'https://databank.yushanfang.com/api/ecapi?path=/databank/crowdFullLink/flowInfo&fromCrowdId=3312&beginTheDate=201810{}&endTheDate=201810{}&toCrowdIdList[0]=3312&toCrowdIdList[1]=3313&toCrowdIdList[2]=3314&toCrowdIdList[3]=3315' # 不校验证书 ssl._create_default_https_context = ssl._create_unverified_context # 携带cookie进行访问 headers = { 'Host':'databank.yushanfang.com', 'Referer':'https://databank.yushanfang.com/', 'Connection':'keep-alive', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Safari/537.36', 'Cookie':'_tb_token_=iNkDeJLdM3MgvKjhsfdW; bs_n_lang=zh_CN; cna=aaj1EViI7x0CATo9kTKvjzgS; ck2=072de851f1c02d5c7bac555f64c5c66d; c_token=c74594b486f8de731e2608cb9526a3f2; an=5YWo5qOJ5pe25Luj5a6Y5pa55peX6Iiw5bqXOnpmeA%3D%3D; lg=true; sg=\"=19\"; lvc=sAhojs49PcqHQQ%3D%3D; isg=BPT0Md7dE_ic5Ie3Oa85RxaMxbLK3UqJMMiN6o5VjH8C-ZRDtt7aRXb3fXGEAVAP', } rows = [] n = 20 while n <31: row = [] row.append(n) m =21 while m <32: if m < n + 1: row.append("") else: # 格式化请求地址,更换请求参数 reqUrl = url.format(n, m) # 打印本次请求地址 print(reqUrl) # 发送请求,获取响应结果 request = urllib.request.Request(url=reqUrl, headers=headers) response = urllib.request.urlopen(request) text = response.read().decode('utf8') # 打印本次请求响应内容 print(text) # 将响应内容转换为Json对象 jsonobj = json.loads(text) # 从Json对象获取想要的内容 toCntPercent = jsonobj['data']['interCrowdInfo'][1]['toCntPercent'] # 生成行数据 row.append(str(toCntPercent) + "%") m = m+1 rows.append(row) n = n+1 # 生成Excel表头 header = ['AI流转率', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31'] # 将表头数据和爬虫数据导出到Excel文件 with open('D:\\res\\pachong\\tmall.csv', 'w', encoding='gb18030') as f : f_csv = csv.writer(f) f_csv.writerow(header) f_csv.writerows(rows)
导出内容如下:
到此这篇关于使用Python爬取Json数据的文章就介绍到这了,更多相关Python爬取Json数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python SQLAlchemy之SQL工具包和ORM的用法详解
SQLAlchemy 是 Python 中一款非常流行的数据库工具包,它对底层的数据库操作提供了高层次的抽象,在本篇文章中,我们将介绍SQLAlchemy的两个主要组成部分:SQL工具包和对象关系映射器的基本使用,需要的朋友可以参考下2023-08-08
最新评论