Python利用imshow制作自定义渐变填充柱状图(colorbar)

 更新时间:2020年12月10日 11:50:29   作者:晚亭听铃  
这篇文章主要介绍了Python利用imshow制作自定义渐变填充柱状图(colorbar),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

目的

在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow() 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic' 可以很好的做出渐变效果。

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020

@author: fya
"""

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl

fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围

a = np.array([[1, 1],
       [2, 2],
       [3, 3],
       [4, 4],
       [5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
print(a.shape)

clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果
clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)


plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层
ax.yaxis.tick_right() #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要


plt.show()
fig.savefig('colorbar.tif',dpi=600,format='tif')
print('Done!')

#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)

#width = 0.4
#for x, y in zip(x, y):
  #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)

#ax.set_aspect('auto')
#plt.show()

代码2,渐变色分100段

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020

@author: fanyiang
"""

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
import pandas as pd
import os

fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)

#a = np.array([[1, 1],
       #[2, 2],
       #[3, 3],
       #[4, 4],
       #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
avalue=locals() 
dfvalue=locals()      
for i in range(1,101):
  avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细
  dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe
  df=dfvalue['df'+str(i)]
  df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去
df3=pd.read_csv('temp.csv',header=None)#读取csv
df3.columns=['序号','x','y']#column命名,第一列废弃
df3=df3.drop('序号',axis=1)#删除第一列
a=np.array(df3) #转array
print(df3.head())

                                                                      
                                                                  
#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))

print(a)

clist=['white','blue'] #线性变化颜色由上面array值 小到大
clist2=['red','white']
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)


plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层
ax.yaxis.tick_right() #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要


plt.show()
fig.savefig('colorbar.tif',dpi=600,format='tif')
os.remove("temp.csv") #删除临时的csv文件
print('Done!')

#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)

#width = 0.4
#for x, y in zip(x, y):
  #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)

#ax.set_aspect('auto')
#plt.show()

效果

效果1

在这里插入图片描述

效果2

在这里插入图片描述

到此这篇关于Python利用imshow制作自定义渐变填充柱状图(colorbar)的文章就介绍到这了,更多相关Python 渐变填充柱状图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django模板标签{% for %}循环,获取制定条数据实例

    Django模板标签{% for %}循环,获取制定条数据实例

    这篇文章主要介绍了Django模板标签{% for %}循环,获取制定条数据实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境

    Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境

    这篇文章主要介绍了Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境的教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • Python(Django)项目与Apache的管理交互的方法

    Python(Django)项目与Apache的管理交互的方法

    这篇文章主要介绍了Python(Django)项目与Apache的管理交互的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-05-05
  • python中pandas库的iloc函数用法解析

    python中pandas库的iloc函数用法解析

    在 Pandas 中,.iloc 是一种用于基于整数位置进行索引的属性,可以用于获取 DataFrame 或 Series 中的数据,这篇文章主要介绍了python中pandas库的iloc函数用法,需要的朋友可以参考下
    2023-05-05
  • python实现感知器算法(批处理)

    python实现感知器算法(批处理)

    这篇文章主要为大家详细介绍了python实现感知器算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • 详解如何使用Python隐藏图像中的数据

    详解如何使用Python隐藏图像中的数据

    隐写术是在任何文件中隐藏秘密数据的艺术。隐写术的主要目的是隐藏任何文件中的预期信息,而不实际改变文件的外观,即文件外观看起来和以前一样。本文将利用Python实现隐藏图像中的数据,需要的可以参考一下
    2022-02-02
  • Python如何破解压缩包密码

    Python如何破解压缩包密码

    破解rar和zip压缩包。Windows下使用PyCharm软件,本文给大家详细介绍Python如何破解压缩包密码,感兴趣的朋友一起看看吧
    2022-05-05
  • Python写一个字符串数字后缀部分的递增函数

    Python写一个字符串数字后缀部分的递增函数

    这篇文章主要介绍了Python写一个字符串数字后缀部分的递增函数,写函数之前需要Python处理重名字符串,添加或递增数字字符串后缀,下面具体过程,需要的小伙伴可以参考一下
    2022-03-03
  • 什么是python的列表推导式

    什么是python的列表推导式

    在本篇文章里小编给大家分享了关于python列表推导式的含义及用法,需要的朋友们可以参考下。
    2020-05-05
  • Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用

    Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用

    Python,numpy都有自己的一套数据格式,本文主要介绍了Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-07-07

最新评论