python 实现逻辑回归

 更新时间:2020年12月30日 10:04:16   作者:呱唧_T_呱唧  
这篇文章主要介绍了python 实现逻辑回归的方法,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下

逻辑回归

适用类型:解决二分类问题

逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的结果,通过Sigmoid函数映射到(0,1)之间

线性回归的决策函数:数据与θ的乘法,数据的矩阵格式(样本数×列数),θ的矩阵格式(列数×1)

将其通过Sigmoid函数,获得逻辑回归的决策函数

使用Sigmoid函数的原因:

可以对(-∞, +∞)的结果,映射到(0, 1)之间作为概率

可以将1/2作为决策边界

数学特性好,求导容易

逻辑回归的损失函数

线性回归的损失函数维平方损失函数,如果将其用于逻辑回归的损失函数,则其数学特性不好,有很多局部极小值,难以用梯度下降法求解最优

这里使用对数损失函数

解释:如果一个样本为正样本,那么我们希望将其预测为正样本的概率p越大越好,也就是决策函数的值越大越好,则logp越大越好,逻辑回归的决策函数值就是样本为正的概率;如果一个样本为负样本,那么我们希望将其预测为负样本的概率越大越好,也就是(1-p)越大越好,即log(1-p)越大越好

为什么使用对数函数:样本集中有很多样本,要求其概率连乘,概率为0-1之间的数,连乘越来越小,利用log变换将其变为连加,不会溢出,不会超出计算精度

损失函数:: y(1->m)表示Sigmoid值(样本数×1),hθx(1->m)表示决策函数值(样本数×1),所以中括号的值(1×1)

二分类逻辑回归直线编码实现

import numpy as np
from matplotlib import pyplot as plt
​
from scipy.optimize import minimize
from sklearn.preprocessing import PolynomialFeatures
​
​
class MyLogisticRegression:
  def __init__(self):
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    # 包含数据和标签的数据集
    self.data = np.loadtxt("./data2.txt", delimiter=",")
    self.data_mat = self.data[:, 0:2]
    self.label_mat = self.data[:, 2]
    self.thetas = np.zeros((self.data_mat.shape[1]))
​
    # 生成多项式特征,最高6次项
    self.poly = PolynomialFeatures(6)
    self.p_data_mat = self.poly.fit_transform(self.data_mat)
​
  def cost_func_reg(self, theta, reg):
    """
    损失函数具体实现
    :param theta: 逻辑回归系数
    :param data_mat: 带有截距项的数据集
    :param label_mat: 标签数据集
    :param reg:
    :return:
    """
    m = self.label_mat.size
    label_mat = self.label_mat.reshape(-1, 1)
    h = self.sigmoid(self.p_data_mat.dot(theta))
​
    J = -1 * (1/m)*(np.log(h).T.dot(label_mat) + np.log(1-h).T.dot(1-label_mat))\
      + (reg / (2*m)) * np.sum(np.square(theta[1:]))
    if np.isnan(J[0]):
      return np.inf
    return J[0]
​
  def gradient_reg(self, theta, reg):
    m = self.label_mat.size
    h = self.sigmoid(self.p_data_mat.dot(theta.reshape(-1, 1)))
    label_mat = self.label_mat.reshape(-1, 1)
​
    grad = (1 / m)*self.p_data_mat.T.dot(h-label_mat) + (reg/m)*np.r_[[[0]], theta[1:].reshape(-1, 1)]
    return grad
​
  def gradient_descent_reg(self, alpha=0.01, reg=0, iterations=200):
    """
    逻辑回归梯度下降收敛函数
    :param alpha: 学习率
    :param reg:
    :param iterations: 最大迭代次数
    :return: 逻辑回归系数组
    """
    m, n = self.p_data_mat.shape
    theta = np.zeros((n, 1))
    theta_set = []
​
    for i in range(iterations):
      grad = self.gradient_reg(theta, reg)
      theta = theta - alpha*grad.reshape(-1, 1)
      theta_set.append(theta)
    return theta, theta_set
​
  def plot_data_reg(self, x_label=None, y_label=None, neg_text="negative", pos_text="positive", thetas=None):
    neg = self.label_mat == 0
    pos = self.label_mat == 1
    fig1 = plt.figure(figsize=(12, 8))
    ax1 = fig1.add_subplot(111)
    ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text)
    ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text)
    ax1.set_xlabel(x_label, fontsize=14)
​
    # 描绘逻辑回归直线(曲线)
    if isinstance(thetas, type(np.array([]))):
      x1_min, x1_max = self.p_data_mat[:, 1].min(), self.p_data_mat[:, 1].max()
      x2_min, x2_max = self.p_data_mat[:, 2].min(), self.p_data_mat[:, 2].max()
      xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
      h = self.sigmoid(self.poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(thetas))
      h = h.reshape(xx1.shape)
      ax1.contour(xx1, xx2, h, [0.5], linewidths=3)
    ax1.legend(fontsize=14)
    plt.show()
​
  @staticmethod
  def sigmoid(z):
    return 1.0 / (1 + np.exp(-z))
​
​
if __name__ == '__main__':
  my_logistic_regression = MyLogisticRegression()
  # my_logistic_regression.plot_data(x_label="线性不可分数据集")
​
  thetas, theta_set = my_logistic_regression.gradient_descent_reg(alpha=0.5, reg=0, iterations=500)
  my_logistic_regression.plot_data_reg(thetas=thetas, x_label="$\\lambda$ = {}".format(0))
​
  thetas = np.zeros((my_logistic_regression.p_data_mat.shape[1], 1))
  # 未知错误,有大佬解决可留言
  result = minimize(my_logistic_regression.cost_func_reg, thetas,
           args=(0, ),
           method=None,
           jac=my_logistic_regression.gradient_reg)
  my_logistic_regression.plot_data_reg(thetas=result.x, x_label="$\\lambda$ = {}".format(0))

二分类问题逻辑回归曲线编码实现

import numpy as np
from matplotlib import pyplot as plt
​
from scipy.optimize import minimize
from sklearn.preprocessing import PolynomialFeatures
​
​
class MyLogisticRegression:
  def __init__(self):
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    # 包含数据和标签的数据集
    self.data = np.loadtxt("./data2.txt", delimiter=",")
    self.data_mat = self.data[:, 0:2]
    self.label_mat = self.data[:, 2]
    self.thetas = np.zeros((self.data_mat.shape[1]))
​
    # 生成多项式特征,最高6次项
    self.poly = PolynomialFeatures(6)
    self.p_data_mat = self.poly.fit_transform(self.data_mat)
​
  def cost_func_reg(self, theta, reg):
    """
    损失函数具体实现
    :param theta: 逻辑回归系数
    :param data_mat: 带有截距项的数据集
    :param label_mat: 标签数据集
    :param reg:
    :return:
    """
    m = self.label_mat.size
    label_mat = self.label_mat.reshape(-1, 1)
    h = self.sigmoid(self.p_data_mat.dot(theta))
​
    J = -1 * (1/m)*(np.log(h).T.dot(label_mat) + np.log(1-h).T.dot(1-label_mat))\
      + (reg / (2*m)) * np.sum(np.square(theta[1:]))
    if np.isnan(J[0]):
      return np.inf
    return J[0]
​
  def gradient_reg(self, theta, reg):
    m = self.label_mat.size
    h = self.sigmoid(self.p_data_mat.dot(theta.reshape(-1, 1)))
    label_mat = self.label_mat.reshape(-1, 1)
​
    grad = (1 / m)*self.p_data_mat.T.dot(h-label_mat) + (reg/m)*np.r_[[[0]], theta[1:].reshape(-1, 1)]
    return grad
​
  def gradient_descent_reg(self, alpha=0.01, reg=0, iterations=200):
    """
    逻辑回归梯度下降收敛函数
    :param alpha: 学习率
    :param reg:
    :param iterations: 最大迭代次数
    :return: 逻辑回归系数组
    """
    m, n = self.p_data_mat.shape
    theta = np.zeros((n, 1))
    theta_set = []
​
    for i in range(iterations):
      grad = self.gradient_reg(theta, reg)
      theta = theta - alpha*grad.reshape(-1, 1)
      theta_set.append(theta)
    return theta, theta_set
​
  def plot_data_reg(self, x_label=None, y_label=None, neg_text="negative", pos_text="positive", thetas=None):
    neg = self.label_mat == 0
    pos = self.label_mat == 1
    fig1 = plt.figure(figsize=(12, 8))
    ax1 = fig1.add_subplot(111)
    ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text)
    ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text)
    ax1.set_xlabel(x_label, fontsize=14)
​
    # 描绘逻辑回归直线(曲线)
    if isinstance(thetas, type(np.array([]))):
      x1_min, x1_max = self.p_data_mat[:, 1].min(), self.p_data_mat[:, 1].max()
      x2_min, x2_max = self.p_data_mat[:, 2].min(), self.p_data_mat[:, 2].max()
      xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
      h = self.sigmoid(self.poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(thetas))
      h = h.reshape(xx1.shape)
      ax1.contour(xx1, xx2, h, [0.5], linewidths=3)
    ax1.legend(fontsize=14)
    plt.show()
​
  @staticmethod
  def sigmoid(z):
    return 1.0 / (1 + np.exp(-z))
​
​
if __name__ == '__main__':
  my_logistic_regression = MyLogisticRegression()
  # my_logistic_regression.plot_data(x_label="线性不可分数据集")
​
  thetas, theta_set = my_logistic_regression.gradient_descent_reg(alpha=0.5, reg=0, iterations=500)
  my_logistic_regression.plot_data_reg(thetas=thetas, x_label="$\\lambda$ = {}".format(0))
​
  thetas = np.zeros((my_logistic_regression.p_data_mat.shape[1], 1))
  # 未知错误,有大佬解决可留言
  result = minimize(my_logistic_regression.cost_func_reg, thetas,
           args=(0, ),
           method=None,
           jac=my_logistic_regression.gradient_reg)
  my_logistic_regression.plot_data_reg(thetas=result.x, x_label="$\\lambda$ = {}".format(0))

以上就是python 实现逻辑回归的详细内容,更多关于python 实现逻辑回归的资料请关注脚本之家其它相关文章!

相关文章

  • 分享Python中四个不常见的小技巧

    分享Python中四个不常见的小技巧

    这篇文章主要介绍了分享Python中四个不常见的小技巧,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • 详解Python 关联规则分析

    详解Python 关联规则分析

    这篇文章主要介绍了Python 关联规则分析的相关资料,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • node命令行服务器(http-server)和跨域的实现

    node命令行服务器(http-server)和跨域的实现

    本文主要介绍了node命令行服务器(http-server)和跨域的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • 解析Python中的eval()、exec()及其相关函数

    解析Python中的eval()、exec()及其相关函数

    本篇文章主要介绍了解析Python中的eval()、exec()及其相关函数,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • python执行系统命令4种方法与比较

    python执行系统命令4种方法与比较

    这篇文章主要介绍了python执行系统命令4种方法与比较,需要的朋友可以参考下
    2021-04-04
  • Python将Office文档(Word、Excel、PDF、PPT)转为OFD格式的实现方法

    Python将Office文档(Word、Excel、PDF、PPT)转为OFD格式的实现方法

    OFD(Open Fixed-layout Document )是我国自主制定的一种开放版式文件格式标准,如果想要通过Python将Office文档(如Word、Excel或PowerPoint)及PDF文档转换为OFD格式,可以参考本文中提供的实现方法,需要的朋友可以参考下
    2024-06-06
  • 排序算法之希尔排序法解析

    排序算法之希尔排序法解析

    这篇文章主要介绍了排序算法之希尔排序法解析,希尔排序法(Shell Sort),也称为缩小增量排序,是一种改进的插入排序算法,它通过将待排序的元素按照一定的间隔分组,对每个分组进行插入排序,逐渐减小间隔直至为1,最后对整个序列进行一次插入排序
    2023-07-07
  • PyCharm搭建一劳永逸的开发环境

    PyCharm搭建一劳永逸的开发环境

    这篇文章主要介绍了PyCharm搭建一劳永逸的开发环境,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • python中安装django模块的方法

    python中安装django模块的方法

    这篇文章主要介绍了python中安装django模块的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03
  • python多继承(钻石继承)问题和解决方法简单示例

    python多继承(钻石继承)问题和解决方法简单示例

    这篇文章主要介绍了python多继承(钻石继承)问题和解决方法,结合实例形式分析了Python多继承调用父类初始化方法相关操作技巧,需要的朋友可以参考下
    2019-10-10

最新评论