matplotlib绘制多子图共享鼠标光标的方法示例
更新时间:2021年01月08日 11:48:54 作者:mighty13
这篇文章主要介绍了matplotlib绘制多子图共享鼠标光标的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
matplotlib
官方除了提供了鼠标十字光标的示例,还提供了同一图像内多子图共享光标的示例,其功能主要由widgets
模块中的MultiCursor
类提供支持。
MultiCursor
类与Cursor
类参数类似,差异主要在:
Cursor
类参数只有一个ax
,即需要显示光标的子图;MultiCursor
类参数为canvas
和axes
,其中axes
为需要共享光标的子图列表。Cursor
类中,光标默认是十字线;MultiCursor
类中,光标默认为竖线。
官方示例
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import MultiCursor t = np.arange(0.0, 2.0, 0.01) s1 = np.sin(2*np.pi*t) s2 = np.sin(4*np.pi*t) fig, (ax1, ax2) = plt.subplots(2, sharex=True) ax1.plot(t, s1) ax2.plot(t, s2) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1) plt.show()
简易修改版
multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1, horizOn=True, vertOn=True)
MultiCursor
类源码
class MultiCursor(Widget): """ Provide a vertical (default) and/or horizontal line cursor shared between multiple axes. For the cursor to remain responsive you must keep a reference to it. Example usage:: from matplotlib.widgets import MultiCursor import matplotlib.pyplot as plt import numpy as np fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) t = np.arange(0.0, 2.0, 0.01) ax1.plot(t, np.sin(2*np.pi*t)) ax2.plot(t, np.sin(4*np.pi*t)) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1, horizOn=False, vertOn=True) plt.show() """ def __init__(self, canvas, axes, useblit=True, horizOn=False, vertOn=True, **lineprops): self.canvas = canvas self.axes = axes self.horizOn = horizOn self.vertOn = vertOn xmin, xmax = axes[-1].get_xlim() ymin, ymax = axes[-1].get_ylim() xmid = 0.5 * (xmin + xmax) ymid = 0.5 * (ymin + ymax) self.visible = True self.useblit = useblit and self.canvas.supports_blit self.background = None self.needclear = False if self.useblit: lineprops['animated'] = True if vertOn: self.vlines = [ax.axvline(xmid, visible=False, **lineprops) for ax in axes] else: self.vlines = [] if horizOn: self.hlines = [ax.axhline(ymid, visible=False, **lineprops) for ax in axes] else: self.hlines = [] self.connect() def connect(self): """Connect events.""" self._cidmotion = self.canvas.mpl_connect('motion_notify_event', self.onmove) self._ciddraw = self.canvas.mpl_connect('draw_event', self.clear) def disconnect(self): """Disconnect events.""" self.canvas.mpl_disconnect(self._cidmotion) self.canvas.mpl_disconnect(self._ciddraw) def clear(self, event): """Clear the cursor.""" if self.ignore(event): return if self.useblit: self.background = ( self.canvas.copy_from_bbox(self.canvas.figure.bbox)) for line in self.vlines + self.hlines: line.set_visible(False) def onmove(self, event): if self.ignore(event): return if event.inaxes is None: return if not self.canvas.widgetlock.available(self): return self.needclear = True if not self.visible: return if self.vertOn: for line in self.vlines: line.set_xdata((event.xdata, event.xdata)) line.set_visible(self.visible) if self.horizOn: for line in self.hlines: line.set_ydata((event.ydata, event.ydata)) line.set_visible(self.visible) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) if self.vertOn: for ax, line in zip(self.axes, self.vlines): ax.draw_artist(line) if self.horizOn: for ax, line in zip(self.axes, self.hlines): ax.draw_artist(line) self.canvas.blit() else: self.canvas.draw_idle()
到此这篇关于matplotlib绘制多子图共享鼠标光标的方法示例的文章就介绍到这了,更多相关matplotlib 多子图鼠标光标内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python开发如何在ubuntu 15.10 上配置vim
这篇文章主要介绍了Python开发如何在ubuntu 15.10 上配置vim 的相关资料,需要的朋友可以参考下2016-01-01
最新评论