python爬取微博评论的实例讲解
python爬虫是程序员们一定会掌握的知识,练习python爬虫时,很多人会选择爬取微博练手。python爬虫微博根据微博存在于不同媒介上,所爬取的难度有差异,无论是python新入手的小白,还是已经熟练掌握的程序员,可以拿来练手。本文介绍python爬取微博评论的代码实例。
一、爬虫微博
与QQ空间爬虫类似,可以爬取新浪微博用户的个人信息、微博信息、粉丝、关注和评论等。
爬虫抓取微博的速度可以达到 1300万/天 以上,具体要视网络情况。
难度程度排序:网页端>手机端>移动端。微博端就是最好爬的微博端。
二、python爬虫爬取微博评论
第一步:确定评论用户的id
# -*- coding:utf-8 -*- import requests import re import time import pandas as pd urls = 'https://m.weibo.cn/api/comments/show?id=4073157046629802&page={}' headers = {'Cookies':'Your cookies', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36'}
第二步:找到html标签
tags = re.compile('</?\w+[^>]*>')
第三步:设置提取评论function
def get_comment(url): j = requests.get(url, headers=headers).json() comment_data = j['data']['data'] for data in comment_data: try:
第四步:利用正则表达式去除文本中的html标签
comment = tags.sub('', data['text']) # 去掉html标签 reply = tags.sub('', data['reply_text']) weibo_id = data['id'] reply_id = data['reply_id'] comments.append(comment) comments.append(reply) ids.append(weibo_id) ids.append(reply_id)
第五步:爬取评论
df = pd.DataFrame({'ID': ids, '评论': comments}) df = df.drop_duplicates() df.to_csv('观察者网.csv', index=False, encoding='gb18030')
实例扩展:
# -*- coding: utf-8 -*- # Created : 2018/8/26 18:33 # author :GuoLi import requests import json import time from lxml import etree import html import re from bs4 import BeautifulSoup class Weibospider: def __init__(self): # 获取首页的相关信息: self.start_url = 'https://weibo.com/u/5644764907?page=1&is_all=1' self.headers = { "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "max-age=0", "cookie": 使用自己本机的cookie, "referer": "https://www.weibo.com/u/5644764907?topnav=1&wvr=6&topsug=1", "upgrade-insecure-requests": "1", "user-agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.96 Safari/537.36", } self.proxy = { 'HTTP': 'HTTP://180.125.70.78:9999', 'HTTP': 'HTTP://117.90.4.230:9999', 'HTTP': 'HTTP://111.77.196.229:9999', 'HTTP': 'HTTP://111.177.183.57:9999', 'HTTP': 'HTTP://123.55.98.146:9999', } def parse_home_url(self, url): # 处理解析首页面的详细信息(不包括两个通过ajax获取到的页面) res = requests.get(url, headers=self.headers) response = res.content.decode().replace("\\", "") # every_url = re.compile('target="_blank" href="(/\d+/\w+\?from=\w+&wvr=6&mod=weibotime)" rel="external nofollow" ', re.S).findall(response) every_id = re.compile('name=(\d+)', re.S).findall(response) # 获取次级页面需要的id home_url = [] for id in every_id: base_url = 'https://weibo.com/aj/v6/comment/big?ajwvr=6&id={}&from=singleWeiBo' url = base_url.format(id) home_url.append(url) return home_url def parse_comment_info(self, url): # 爬取直接发表评论的人的相关信息(name,info,time,info_url) res = requests.get(url, headers=self.headers) response = res.json() count = response['data']['count'] html = etree.HTML(response['data']['html']) name = html.xpath("//div[@class='list_li S_line1 clearfix']/div[@class='WB_face W_fl']/a/img/@alt") # 评论人的姓名 info = html.xpath("//div[@node-type='replywrap']/div[@class='WB_text']/text()") # 评论信息 info = "".join(info).replace(" ", "").split("\n") info.pop(0) comment_time = html.xpath("//div[@class='WB_from S_txt2']/text()") # 评论时间 name_url = html.xpath("//div[@class='WB_face W_fl']/a/@href") # 评论人的url name_url = ["https:" + i for i in name_url] comment_info_list = [] for i in range(len(name)): item = {} item["name"] = name[i] # 存储评论人的网名 item["comment_info"] = info[i] # 存储评论的信息 item["comment_time"] = comment_time[i] # 存储评论时间 item["comment_url"] = name_url[i] # 存储评论人的相关主页 comment_info_list.append(item) return count, comment_info_list def write_file(self, path_name, content_list): for content in content_list: with open(path_name, "a", encoding="UTF-8") as f: f.write(json.dumps(content, ensure_ascii=False)) f.write("\n") def run(self): start_url = 'https://weibo.com/u/5644764907?page={}&is_all=1' start_ajax_url1 = 'https://weibo.com/p/aj/v6/mblog/mbloglist?ajwvr=6&domain=100406&is_all=1&page={0}&pagebar=0&pl_name=Pl_Official_MyProfileFeed__20&id=1004065644764907&script_uri=/u/5644764907&pre_page={0}' start_ajax_url2 = 'https://weibo.com/p/aj/v6/mblog/mbloglist?ajwvr=6&domain=100406&is_all=1&page={0}&pagebar=1&pl_name=Pl_Official_MyProfileFeed__20&id=1004065644764907&script_uri=/u/5644764907&pre_page={0}' for i in range(12): # 微博共有12页 home_url = self.parse_home_url(start_url.format(i + 1)) # 获取每一页的微博 ajax_url1 = self.parse_home_url(start_ajax_url1.format(i + 1)) # ajax加载页面的微博 ajax_url2 = self.parse_home_url(start_ajax_url2.format(i + 1)) # ajax第二页加载页面的微博 all_url = home_url + ajax_url1 + ajax_url2 for j in range(len(all_url)): print(all_url[j]) path_name = "第{}条微博相关评论.txt".format(i * 45 + j + 1) all_count, comment_info_list = self.parse_comment_info(all_url[j]) self.write_file(path_name, comment_info_list) for num in range(1, 10000): if num * 15 < int(all_count) + 15: comment_url = all_url[j] + "&page={}".format(num + 1) print(comment_url) try: count, comment_info_list = self.parse_comment_info(comment_url) self.write_file(path_name, comment_info_list) except Exception as e: print("Error:", e) time.sleep(60) count, comment_info_list = self.parse_comment_info(comment_url) self.write_file(path_name, comment_info_list) del count time.sleep(0.2) print("第{}微博信息获取完成!".format(i * 45 + j + 1)) if __name__ == '__main__': weibo = Weibospider() weibo.run()
到此这篇关于python爬取微博评论的实例讲解的文章就介绍到这了,更多相关python爬虫爬取微博评论内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python命令行参数解析工具 docopt 安装和应用过程详解
这篇文章主要介绍了Python命令行参数解析工具 docopt 安装和应用过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-09-09Python数学建模库StatsModels统计回归简介初识
这篇文章主要为大家介绍了Python数学建模库StatsModels统计回归的基本概念,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝打击多多进步2021-10-10
最新评论