postgresql 索引之 hash的使用详解

 更新时间:2021年02月02日 10:08:09   作者:数据库人生  
这篇文章主要介绍了postgresql 索引之 hash的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

os: ubuntu 16.04

postgresql: 9.6.8

ip 规划

192.168.56.102 node2 postgresql

help create index

postgres=# \h create index
Command:   CREATE INDEX
Description: define a new index
Syntax:
CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ] name ] ON table_name [ USING method ]
  ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ] [, ...] )
  [ WITH ( storage_parameter = value [, ... ] ) ]
  [ TABLESPACE tablespace_name ]
  [ WHERE predicate ]

[ USING method ]

method

要使用的索引方法的名称。可以选择 btree、hash、 gist、spgist、 gin以及brin。 默认方法是btree。

hash

hash 只能处理简单的等值比较,

postgres=# drop table tmp_t0;
DROP TABLE
postgres=# create table tmp_t0(c0 varchar(100),c1 varchar(100));
CREATE TABLE
postgres=# insert into tmp_t0(c0,c1) select md5(id::varchar),md5((id+id)::varchar) from generate_series(1,100000) as id;
INSERT 0 100000
postgres=# create index idx_tmp_t0_1 on tmp_t0 using hash(c0);
CREATE INDEX
postgres=# \d+ tmp_t0
                     Table "public.tmp_t0"
 Column |     Type     | Collation | Nullable | Default | Storage | Stats target | Description 
--------+------------------------+-----------+----------+---------+----------+--------------+-------------
 c0   | character varying(100) |      |     |     | extended |       | 
 c1   | character varying(100) |      |     |     | extended |       | 
Indexes:
  "idx_tmp_t0_1" hash (c0)
postgres=# explain select * from tmp_t0 where c0 = 'd3d9446802a44259755d38e6d163e820';
                 QUERY PLAN                 
----------------------------------------------------------------------------
 Index Scan using idx_tmp_t0_1 on tmp_t0 (cost=0.00..8.02 rows=1 width=66)
  Index Cond: ((c0)::text = 'd3d9446802a44259755d38e6d163e820'::text)
(2 rows)

注意事项,官网特别强调:

Hash索引操作目前不被WAL记录,因此存在未写入修改,在数据库崩溃后需要用REINDEX命令重建Hash索引。

同样,在完成初始的基础备份后,对于Hash索引的改变也不会通过流式或基于文件的复制所复制,所以它们会对其后使用它们的查询给出错误的答案。

正因为这些原因,Hash索引已不再被建议使用。

补充:Postgresql hash索引介绍

hash索引的结构

当数据插入索引时,我们会为这个索引键通过哈希函数计算一个值。 PostgreSQL中的哈希函数始终返回“整数”类型,范围为2^32≈40亿。bucket桶的数量最初为2个,然后动态增加以适应数据大小。可以使用位算法从哈希码计算出桶编号。这个bucket将存放TID。

由于可以将与不同索引键匹配的TID放入同一bucket桶中。而且除了TID之外,还可以将键的源值存储在bucket桶中,但这会增加索引大小。为了节省空间,bucket桶只存储索引键的哈希码,而不存储索引键。

当我们通过索引查询时,我们计算索引键的哈希函数并获取bucket桶的编号。现在,仍然需要遍历存储桶的内容,并仅返回所需的哈希码匹配的TID。由于存储的“hash code - TID”对是有序的,因此可以高效地完成此操作。

但是,两个不同的索引键可能会发生以下情况,两个索引键都进入一个bucket桶,而且具有相同的四字节的哈希码。因此,索引访问方法要求索引引擎重新检查表行中的情况来验证每个TID。

映射数据结构到page

Meta page - 0号page,包含索引内部相关信息

Bucket pages - 索引的主要page,存储 “hash code - TID” 对

Overflow pages - 与bucket page的结构相同,在不足一个page时,作为bucket桶使用

Bitmap pages - 跟踪当前干净的overflow page,并可将其重新用于其他bucket桶

注意,哈希索引不能减​​小大小。虽然我们删除了一些索引行,但是分配的页面将不会返回到操作系统,只会在VACUUMING之后重新用于新数据。减小索引大小的唯一选项是使用REINDEX或VACUUM FULL命令从头开始重建索引

接下来看下hash索引如何创建

demo=# create index on flights using hash(flight_no);
demo=# explain (costs off) select * from flights where flight_no = 'PG0001';
           QUERY PLAN           
----------------------------------------------------
 Bitmap Heap Scan on flights
  Recheck Cond: (flight_no = 'PG0001'::bpchar)
  -> Bitmap Index Scan on flights_flight_no_idx
     Index Cond: (flight_no = 'PG0001'::bpchar)
(4 rows)

注意:10版本之前hash索引不记录到wal中,所以hash索引不能做recovery,当然也就不能复制了,但是从10版本以后hash所用得到了增强,可以记录到wal中,创建的时候也不会再有警告。

查看hash访问方法相关的操作函数

demo=# select  opf.opfname as opfamily_name,
     amproc.amproc::regproc AS opfamily_procedure
from   pg_am am,
     pg_opfamily opf,
     pg_amproc amproc
where  opf.opfmethod = am.oid
and   amproc.amprocfamily = opf.oid
and   am.amname = 'hash'
order by opfamily_name,
     opfamily_procedure;
  
   opfamily_name  |  opfamily_procedure  
--------------------+-------------------------
 abstime_ops    | hashint4extended
 abstime_ops    | hashint4
 aclitem_ops    | hash_aclitem
 aclitem_ops    | hash_aclitem_extended
 array_ops     | hash_array
 array_ops     | hash_array_extended
 bool_ops      | hashcharextended
 bool_ops      | hashchar
 bpchar_ops     | hashbpcharextended
 bpchar_ops     | hashbpchar
 bpchar_pattern_ops | hashbpcharextended
 bpchar_pattern_ops | hashbpchar
 bytea_ops     | hashvarlena
 bytea_ops     | hashvarlenaextended
 char_ops      | hashcharextended
 char_ops      | hashchar
 cid_ops      | hashint4extended
 cid_ops      | hashint4
 date_ops      | hashint4extended
 date_ops      | hashint4
 enum_ops      | hashenumextended
 enum_ops      | hashenum
 float_ops     | hashfloat4extended
 float_ops     | hashfloat8extended
 float_ops     | hashfloat4
 float_ops     | hashfloat8
 ...

可以用这些函数计算相关类型的哈希码

hank=# select hashtext('zhang');
 hashtext  
-------------
 -1172392837
(1 row)
hank=# select hashint4(10);
 hashint4  
-------------
 -1547814713
(1 row)

hash索引相关的属性

hank=# select a.amname, p.name, pg_indexam_has_property(a.oid,p.name)
hank-# from pg_am a,
hank-#   unnest(array['can_order','can_unique','can_multi_col','can_exclude']) p(name)
hank-# where a.amname = 'hash'
hank-# order by a.amname;
 amname |   name   | pg_indexam_has_property 
--------+---------------+-------------------------
 hash  | can_order   | f
 hash  | can_unique  | f
 hash  | can_multi_col | f
 hash  | can_exclude  | t
(4 rows)
hank=# select p.name, pg_index_has_property('hank.idx_test_name'::regclass,p.name)
hank-# from unnest(array[
hank(#    'clusterable','index_scan','bitmap_scan','backward_scan'
hank(#   ]) p(name);
   name   | pg_index_has_property 
---------------+-----------------------
 clusterable  | f
 index_scan  | t
 bitmap_scan  | t
 backward_scan | t
(4 rows)
hank=# select p.name,
hank-#   pg_index_column_has_property('hank.idx_test_name'::regclass,1,p.name)
hank-# from unnest(array[
hank(#    'asc','desc','nulls_first','nulls_last','orderable','distance_orderable',
hank(#    'returnable','search_array','search_nulls'
hank(#   ]) p(name);
    name    | pg_index_column_has_property 
--------------------+------------------------------
 asc        | f
 desc        | f
 nulls_first    | f
 nulls_last     | f
 orderable     | f
 distance_orderable | f
 returnable     | f
 search_array    | f
 search_nulls    | f
(9 rows)

由于hash函数没有特定的排序规则,所以一般的hash索引只支持等值查询,可以通过下面数据字典看到,所有操作都是“=”,而且hash索引也不会处理null值,所以不会标记null值,还有就是hash索引不存储索引键,只存储hash码,所以不会 index-only扫描,也不支持多列创建hash索引

hank=# select  opf.opfname AS opfamily_name,
hank-#     amop.amopopr::regoperator AS opfamily_operator
hank-# from   pg_am am,
hank-#     pg_opfamily opf,
hank-#     pg_amop amop
hank-# where  opf.opfmethod = am.oid
hank-# and   amop.amopfamily = opf.oid
hank-# and   am.amname = 'hash'
hank-# order by opfamily_name,
hank-#     opfamily_operator;
  opfamily_name  |           opfamily_operator           
--------------------+------------------------------------------------------------
 abstime_ops    | =(abstime,abstime)
 aclitem_ops    | =(aclitem,aclitem)
 array_ops     | =(anyarray,anyarray)
 bool_ops      | =(boolean,boolean)
 bpchar_ops     | =(character,character)
 bpchar_pattern_ops | =(character,character)
 bytea_ops     | =(bytea,bytea)
 char_ops      | =("char","char")
 cid_ops      | =(cid,cid)
 date_ops      | =(date,date)
 enum_ops      | =(anyenum,anyenum)
 float_ops     | =(real,real)
 float_ops     | =(double precision,double precision)
 float_ops     | =(real,double precision)
 float_ops     | =(double precision,real)
 hash_hstore_ops  | =(hstore,hstore)
 integer_ops    | =(integer,bigint)
 integer_ops    | =(smallint,smallint)
 integer_ops    | =(integer,integer)
 integer_ops    | =(bigint,bigint)
 integer_ops    | =(bigint,integer)
 integer_ops    | =(smallint,integer)
 integer_ops    | =(integer,smallint)
 integer_ops    | =(smallint,bigint)
 integer_ops    | =(bigint,smallint)
 interval_ops    | =(interval,interval)
 jsonb_ops     | =(jsonb,jsonb)
 macaddr8_ops    | =(macaddr8,macaddr8)
 macaddr_ops    | =(macaddr,macaddr)
 name_ops      | =(name,name)
 network_ops    | =(inet,inet)
 numeric_ops    | =(numeric,numeric)
 oid_ops      | =(oid,oid)
 oidvector_ops   | =(oidvector,oidvector)
 pg_lsn_ops     | =(pg_lsn,pg_lsn)
 range_ops     | =(anyrange,anyrange)
 reltime_ops    | =(reltime,reltime)
 text_ops      | =(text,text)
 text_pattern_ops  | =(text,text)
 time_ops      | =(time without time zone,time without time zone)
 timestamp_ops   | =(timestamp without time zone,timestamp without time zone)
 timestamptz_ops  | =(timestamp with time zone,timestamp with time zone)
 timetz_ops     | =(time with time zone,time with time zone)
 uuid_ops      | =(uuid,uuid)
 xid_ops      | =(xid,xid)

从10版本开始,可以通过pageinspect插件查看hash索引的内部情况

安装插件

create extension pageinspect;

查看0号page

hank=# select hash_page_type(get_raw_page('hank.idx_test_name',0));
 hash_page_type 
----------------
 metapage
(1 row)

查看索引中的行数和已用的最大存储桶数

hank=# select ntuples, maxbucket
hank-# from hash_metapage_info(get_raw_page('hank.idx_test_name',0));  
 ntuples | maxbucket 
---------+-----------
  1000 |     3
(1 row)

可以看到1号page是bucket,查看此bucket page的活动元组和死元组的数量,

也就是膨胀度,以便维护索引

hank=# select hash_page_type(get_raw_page('hank.idx_test_name',1));
 hash_page_type 
----------------
 bucket
(1 row)
hank=# select live_items, dead_items
hank-# from hash_page_stats(get_raw_page('hank.idx_test_name',1));  
 live_items | dead_items 
------------+------------
    407 |     0
(1 row) 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

最新评论