tensorflow2.0教程之Keras快速入门

 更新时间:2021年02月20日 09:23:23   作者:Doit_  
这篇文章主要介绍了tensorflow2.0教程之Keras快速入门,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产。 keras的3个优点:
方便用户使用、模块化和可组合、易于扩展

1.导入tf.keras

tensorflow2推荐使用keras构建网络,常见的神经网络都包含在keras.layer中(最新的tf.keras的版本可能和keras不同)

import tensorflow as tf
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)

2.构建简单模型

2.1模型堆叠

最常见的模型类型是层的堆叠:tf.keras.Sequential 模型

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

2.2网络配置

tf.keras.layers中网络配置:

activation:设置层的激活函数。此参数由内置函数的名称指定,或指定为可调用对象。默认情况下,系统不会应用任何激活函数。

kernel_initializer 和 bias_initializer:创建层权重(核和偏差)的初始化方案。此参数是一个名称或可调用对象,默认为 “Glorot uniform” 初始化器。

kernel_regularizer 和 bias_regularizer:应用层权重(核和偏差)的正则化方案,例如 L1 或 L2 正则化。默认情况下,系统不会应用正则化函数。

layers.Dense(32, activation='sigmoid')
layers.Dense(32, activation=tf.sigmoid)
layers.Dense(32, kernel_initializer='orthogonal')
layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal)
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01))
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))

3.训练和评估

3.1设置训练流程

构建好模型后,通过调用 compile 方法配置该模型的学习流程:

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=[tf.keras.metrics.categorical_accuracy])

3.2输入Numpy数据

import numpy as np

train_x = np.random.random((1000, 72))
train_y = np.random.random((1000, 10))

val_x = np.random.random((200, 72))
val_y = np.random.random((200, 10))

model.fit(train_x, train_y, epochs=10, batch_size=100,
     validation_data=(val_x, val_y))

3.3tf.data输入数据

dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
dataset = dataset.batch(32)
dataset = dataset.repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y))
val_dataset = val_dataset.batch(32)
val_dataset = val_dataset.repeat()

model.fit(dataset, epochs=10, steps_per_epoch=30,
     validation_data=val_dataset, validation_steps=3)

3.4评估与预测

test_x = np.random.random((1000, 72))
test_y = np.random.random((1000, 10))
model.evaluate(test_x, test_y, batch_size=32)
test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y))
test_data = test_data.batch(32).repeat()
model.evaluate(test_data, steps=30)
# predict
result = model.predict(test_x, batch_size=32)
print(result)

4.构建高级模型

4.1函数式api

tf.keras.Sequential 模型是层的简单堆叠,无法表示任意模型。使用 Keras 函数式 API 可以构建复杂的模型拓扑,例如:

多输入模型,

多输出模型,

具有共享层的模型(同一层被调用多次),

具有非序列数据流的模型(例如,残差连接)。

使用函数式 API 构建的模型具有以下特征:

层实例可调用并返回张量。

输入张量和输出张量用于定义 tf.keras.Model 实例。

此模型的训练方式和 Sequential 模型一样。

input_x = tf.keras.Input(shape=(72,))
hidden1 = layers.Dense(32, activation='relu')(input_x)
hidden2 = layers.Dense(16, activation='relu')(hidden1)
pred = layers.Dense(10, activation='softmax')(hidden2)

model = tf.keras.Model(inputs=input_x, outputs=pred)
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)

4.2模型子类化

通过对 tf.keras.Model 进行子类化并定义您自己的前向传播来构建完全可自定义的模型。在 init 方法中创建层并将它们设置为类实例的属性。在 call 方法中定义前向传播

class MyModel(tf.keras.Model):
  def __init__(self, num_classes=10):
    super(MyModel, self).__init__(name='my_model')
    self.num_classes = num_classes
    self.layer1 = layers.Dense(32, activation='relu')
    self.layer2 = layers.Dense(num_classes, activation='softmax')
  def call(self, inputs):
    h1 = self.layer1(inputs)
    out = self.layer2(h1)
    return out
  
  def compute_output_shape(self, input_shape):
    shape = tf.TensorShapej(input_shape).as_list()
    shape[-1] = self.num_classes
    return tf.TensorShape(shape)

model = MyModel(num_classes=10)
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3自定义层

通过对 tf.keras.layers.Layer 进行子类化并实现以下方法来创建自定义层:

build:创建层的权重。使用 add_weight 方法添加权重。

call:定义前向传播。

compute_output_shape:指定在给定输入形状的情况下如何计算层的输出形状。
或者,可以通过实现 get_config 方法和 from_config 类方法序列化层。

class MyLayer(layers.Layer):
  def __init__(self, output_dim, **kwargs):
    self.output_dim = output_dim
    super(MyLayer, self).__init__(**kwargs)
  
  def build(self, input_shape):
    shape = tf.TensorShape((input_shape[1], self.output_dim))
    self.kernel = self.add_weight(name='kernel1', shape=shape,
                  initializer='uniform', trainable=True)
    super(MyLayer, self).build(input_shape)
  
  def call(self, inputs):
    return tf.matmul(inputs, self.kernel)

  def compute_output_shape(self, input_shape):
    shape = tf.TensorShape(input_shape).as_list()
    shape[-1] = self.output_dim
    return tf.TensorShape(shape)

  def get_config(self):
    base_config = super(MyLayer, self).get_config()
    base_config['output_dim'] = self.output_dim
    return base_config

  @classmethod
  def from_config(cls, config):
    return cls(**config)
  
model = tf.keras.Sequential(
[
  MyLayer(10),
  layers.Activation('softmax')
])


model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3回调

callbacks = [
  tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(train_x, train_y, batch_size=16, epochs=5,
     callbacks=callbacks, validation_data=(val_x, val_y))

5保持和恢复

5.1权重保存

model = tf.keras.Sequential([
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss='categorical_crossentropy',
       metrics=['accuracy'])

model.save_weights('./weights/model')
model.load_weights('./weights/model')
model.save_weights('./model.h5')
model.load_weights('./model.h5')

5.2保存网络结构

# 序列化成json
import json
import pprint
json_str = model.to_json()
pprint.pprint(json.loads(json_str))
fresh_model = tf.keras.models.model_from_json(json_str)


# 保持为yaml格式 #需要提前安装pyyaml

yaml_str = model.to_yaml()
print(yaml_str)
fresh_model = tf.keras.models.model_from_yaml(yaml_str)

5.3保存整个模型

model = tf.keras.Sequential([
 layers.Dense(10, activation='softmax', input_shape=(72,)),
 layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
       loss='categorical_crossentropy',
       metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)
model.save('all_model.h5')
model = tf.keras.models.load_model('all_model.h5')

6.将keras用于Estimator

Estimator API 用于针对分布式环境训练模型。它适用于一些行业使用场景,例如用大型数据集进行分布式训练并导出模型以用于生产

model = tf.keras.Sequential([layers.Dense(10,activation='softmax'),
             layers.Dense(10,activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss='categorical_crossentropy',
       metrics=['accuracy'])

estimator = tf.keras.estimator.model_to_estimator(model)

到此这篇关于tensorflow2.0教程之Keras快速入门的文章就介绍到这了,更多相关Keras快速入门内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python绘制分组条形图的示例代码

    python绘制分组条形图的示例代码

    本文主要介绍了如何使用python绘制分组条形图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-07-07
  • Python+matplotlib绘制多子图的方法详解

    Python+matplotlib绘制多子图的方法详解

    Matplotlib是Python中最受欢迎的数据可视化软件包之一,它是 Python常用的2D绘图库,同时它也提供了一部分3D绘图接口。本文将详细介绍如何通过Matplotlib绘制多子图,需要的可以参考一下
    2022-07-07
  • Spring http服务远程调用实现过程解析

    Spring http服务远程调用实现过程解析

    这篇文章主要介绍了Spring http服务远程调用实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • 在pycharm中关掉ipython console/PyDev操作

    在pycharm中关掉ipython console/PyDev操作

    这篇文章主要介绍了在pycharm中关掉ipython console/PyDev操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python快速将ppt制作成配音视频课件的操作方法

    Python快速将ppt制作成配音视频课件的操作方法

    最近在捣鼓配音视频课件的制作方法,发现使用Moviepy进行合成比图形操作界面的合成软件效果更好,可以完美的解决音频和ppt材料的协同问题,下面就详细介绍一下这个过程,供ppt视频课件制作生手提供一个可以高效制作视频的方法
    2021-06-06
  • 在ipython notebook中使用argparse方式

    在ipython notebook中使用argparse方式

    这篇文章主要介绍了在ipython notebook中使用argparse方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • python中if嵌套命令实例讲解

    python中if嵌套命令实例讲解

    在本篇文章里小编给大家整理的是一篇关于python中if嵌套命令实例讲解内容,有兴趣的朋友们可以学习下。
    2021-02-02
  • 屏蔽Django admin界面添加按钮的操作

    屏蔽Django admin界面添加按钮的操作

    这篇文章主要介绍了屏蔽Django admin界面添加按钮的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • 使用 Python ssh 远程登陆服务器的最佳方案

    使用 Python ssh 远程登陆服务器的最佳方案

    这篇文章主要介绍了使用 Python ssh 远程登陆服务器的最佳方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • AI与Python人工智能遗传算法

    AI与Python人工智能遗传算法

    这篇文章主要为大家介绍了AI与Python人工智能遗传算法的详解教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05

最新评论