matplotlib之属性组合包(cycler)的使用

 更新时间:2021年02月24日 11:55:27   作者:mighty13  
这篇文章主要介绍了matplotlib之属性组合包(cycler)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

matplotlib的依赖包cycler是matplotlib自主开发的属性组合包,功能与内置模块itertools很多函数非常相似,可用于创建特殊的迭代器。matpoltlib在属性设置底层中使用了cycler包,典型的案例就是在多数据系列绘图中循环使用颜色、线条等外观设置。使用cycler可以避免构造多重循环,更简便、灵活的组合属性。

cycler包概述

cycler包的API主要有三个:

  • cycler(*args, **kwargs):工厂函数,创建一个Cycler对象。cycler(*args, **kwargs)有三种调用方式:
    • cycler(arg):arg为Cycler对象。复制Cycler对象的构造函数。
    • cycler(label1=iter1[, label2=iter2[, ...]]):label必须是有效的Python标识符,要求类似字典的键,iter为可迭代对象。求多组参数的点积,功能类似于zip()函数。
    • cycler(label, itr):从一对label和可迭代对象构造Cycler对象。这里label可以为整数和带空格的字符串。
  • Cycler(left[, right, op]) :底层类。
  • concat(left, right) :拼接两个cycler对象。

基本功能

cycler的基本功能是方便的将一个可哈希的对象(hashable)与一系列值进行映射。
根据下面的例子可知,cycler对象可以将关键字参数名称与序列进行一一映射,cycler对象是一个迭代器,迭代输出的对象为字典结构,键为关键字参数名称,值为序列的元素。

In [1]: from cycler import cycler
In [2]: color_cycle = cycler(color=['r', 'g', 'b'])
In [3]: color_cycle
Out[3]: cycler('color', ['r', 'g', 'b'])
In [4]: len(color_cycle)
Out[4]: 3
In [5]: color_cycle.keys
Out[5]: {'color'}
In [6]: for i in color_cycle:
  ...:   print(i)
  ...:
{'color': 'r'}
{'color': 'g'}
{'color': 'b'}

cycler的基本功能与循环非常相似,cycler的强大在于创建复杂的属性组合。

加法运算(cycler对象相加)

两个cycler对象进行加法运算,相当于将两个对象的元素按次序一一组合,功能类似于Python内置的zip()函数。

In [1]: from cycler import cycler
In [2]: color_cycle = cycler(color=['r', 'g', 'b'])
In [3]: lw_cycle = cycler(lw=range(1, 4))
In [4]: wc = lw_cycle + color_cycle
In [5]: for s in wc:
  ...:   print(s)
  ...:
{'lw': 1, 'color': 'r'}
{'lw': 2, 'color': 'g'}
{'lw': 3, 'color': 'b'}
 
cycler函数传递多个关键字参数就相当于对这些参数进行加法运算
In [1]: from cycler import cycler
In [2]: wc = cycler(c=['r', 'g', 'b'], lw=range(3))
In [3]: for s in wc:
  ...:   print(s)
  ...:
{'c': 'r', 'lw': 0}
{'c': 'g', 'lw': 1}
{'c': 'b', 'lw': 2}

乘法运算(cycler对象相乘)

两个cycler对象进行乘法运算,相当于求两个对象的元素的笛卡尔积,功能类似于Python内置的itertools.product()函数。

In [1]: from cycler import cycler
In [2]: color_cycle = cycler(color=['r', 'g', 'b'])
In [3]: m_cycle = cycler(marker=['s', 'o'])
In [4]: m_c = m_cycle * color_cycle
In [5]: for s in m_c:
  ...:   print(s)
  ...:
{'marker': 's', 'color': 'r'}
{'marker': 's', 'color': 'g'}
{'marker': 's', 'color': 'b'}
{'marker': 'o', 'color': 'r'}
{'marker': 'o', 'color': 'g'}
{'marker': 'o', 'color': 'b'}

标量乘法运算(cycler对象与整数相乘)

cycler对象与整数n相乘,相当于遍历n次cycler对象。

In [1]: from cycler import cycler
In [2]: color_cycle = cycler(color=['r', 'g', 'b'])
In [3]: color_cycle * 2
Out[3]: cycler('color', ['r', 'g', 'b', 'r', 'g', 'b'])

cycler对象拼接

cycler对象拼接有一个前提就是两个对象必须有相同的键!

In [1]: from cycler import cycler
In [2]: color_cycle = cycler(color=['r', 'g', 'b'])
In [3]: color_cycle2 = cycler(color=['c', 'm', 'y', 'k'])
In [4]: color_cycle = color_cycle.concat(color_cycle2)
In [5]: color_cycle
Out[6]: cycler('color', ['r', 'g', 'b', 'c', 'm', 'y', 'k'])
In [7]: color_cycle3 = cycler(gray=['0.5'])
In [8]: color_cycle = color_cycle.concat(color_cycle3)
---------------------------------------------------------------------------
ValueError                Traceback (most recent call last)
ValueError: Keys do not match:
    Intersection: set()
    Disjoint: {'color', 'gray'}

cycler对象切片

cycler对象支持切片操作。

In [1]: from cycler import cycler
In [2]: color_cycle = cycler(color=['r', 'g', 'b'])
In [3]: color_cycle[:2]
Out[3]: cycler('color', ['r', 'g'])
In [4]: color_cycle[::-1]
Out[4]: cycler('color', ['b', 'g', 'r'])

案例:设置线条属性

使用cycler

from cycler import cycler
import matplotlib.pyplot as plt

color_cycle = cycler(color=['r', 'g', 'b'])
m_cycle = cycler(marker=['s', 'o'])
m_c = m_cycle * color_cycle
for i, j in enumerate(m_c):
  print(i, j)
  plt.plot([i, i], **j)
plt.show()

0 {'marker': 's', 'color': 'r'}
1 {'marker': 's', 'color': 'g'}
2 {'marker': 's', 'color': 'b'}
3 {'marker': 'o', 'color': 'r'}
4 {'marker': 'o', 'color': 'g'}
5 {'marker': 'o', 'color': 'b'}

常规多重循环方法

import matplotlib.pyplot as plt

marker=['s', 'o']
color=['r', 'g', 'b']

n=0
for i in marker:
  for j in color:
    plt.plot([n, n], marker=i, c=j)
    n = n+1
plt.show()

案例总结

相对而言,使用cycler避免了多重循环,当属性种类较多时更简洁,更加灵活。

到此这篇关于matplotlib之属性组合包(cycler)的使用的文章就介绍到这了,更多相关matplotlib 属性组合包内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python语法 之垃圾回收机制

    python语法 之垃圾回收机制

    这篇文章主要介绍了python语法 之垃圾回收机制,垃圾回收机制 是Python解释器自带一种机,专门用来回收不可用的变量值所占用的内存空间,下文相关介绍,需要的朋友可以参考一下
    2022-04-04
  • 安装pyinstaller遇到的各种问题(小结)

    安装pyinstaller遇到的各种问题(小结)

    这篇文章主要介绍了安装pyinstaller遇到的各种问题(小结),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • Python实现绘制双柱状图并显示数值功能示例

    Python实现绘制双柱状图并显示数值功能示例

    这篇文章主要介绍了Python实现绘制双柱状图并显示数值功能,涉及Python数值运算及基于matplotlib的图形绘制相关操作技巧,需要的朋友可以参考下
    2018-06-06
  • python多进程间通信代码实例

    python多进程间通信代码实例

    这篇文章主要介绍了python多进程间通信代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • 解决django服务器重启端口被占用的问题

    解决django服务器重启端口被占用的问题

    今天小编就为大家分享一篇解决django服务器重启端口被占用的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • pandas 像SQL一样使用WHERE IN查询条件说明

    pandas 像SQL一样使用WHERE IN查询条件说明

    这篇文章主要介绍了pandas 像SQL一样使用WHERE IN查询条件说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python3实现高效的端口扫描

    python3实现高效的端口扫描

    这篇文章主要为大家详细介绍了python3实现高效的端口扫描,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • python 类中函数名前后加下划线的具体使用

    python 类中函数名前后加下划线的具体使用

    在Python编程语言中,函数名前后有下划线是一种常见的命名约定,,被广泛应用于类中的函数,本文将介绍下划线命名风格的由来、使用场景以及如何正确应用它,感兴趣的可以了解一下
    2024-01-01
  • TensorFlow实现RNN循环神经网络

    TensorFlow实现RNN循环神经网络

    这篇文章主要介绍了TensorFlow实现RNN循环神经网络,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • Numpy如何检查数组全为零的几种方法

    Numpy如何检查数组全为零的几种方法

    本文主要介绍了Numpy如何检查数组全为零的几种方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10

最新评论