对Pytorch 中的contiguous理解说明

 更新时间:2021年03月03日 14:50:00   作者:gdymind  
这篇文章主要介绍了对Pytorch 中的contiguous理解说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

最近遇到这个函数,但查的中文博客里的解释貌似不是很到位,这里翻译一下stackoverflow上的回答并加上自己的理解。

在pytorch中,只有很少几个操作是不改变tensor的内容本身,而只是重新定义下标与元素的对应关系的。换句话说,这种操作不进行数据拷贝和数据的改变,变的是元数据。

这些操作是:

narrow(),view(),expand()和transpose()

举个栗子,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。

转置的tensor和原tensor的内存是共享的!

为了证明这一点,我们来看下面的代码:

x = torch.randn(3, 2)
y = x.transpose(x, 0, 1)
x[0, 0] = 233
print(y[0, 0])
# print 233

可以看到,改变了y的元素的值的同时,x的元素的值也发生了变化。

也就是说,经过上述操作后得到的tensor,它内部数据的布局方式和从头开始创建一个这样的常规的tensor的布局方式是不一样的!于是…这就有contiguous()的用武之地了。

在上面的例子中,x是contiguous的,但y不是(因为内部数据不是通常的布局方式)。

注意不要被contiguous的字面意思“连续的”误解,tensor中数据还是在内存中一块区域里,只是布局的问题!

当调用contiguous()时,会强制拷贝一份tensor,让它的布局和从头创建的一毛一样。

一般来说这一点不用太担心,如果你没在需要调用contiguous()的地方调用contiguous(),运行时会提示你:

RuntimeError: input is not contiguous

只要看到这个错误提示,加上contiguous()就好啦~

补充:pytorch之expand,gather,squeeze,sum,contiguous,softmax,max,argmax

gather

torch.gather(input,dim,index,out=None)。对指定维进行索引。比如4*3的张量,对dim=1进行索引,那么index的取值范围就是0~2.

input是一个张量,index是索引张量。input和index的size要么全部维度都相同,要么指定的dim那一维度值不同。输出为和index大小相同的张量。

import torch
a=torch.tensor([[.1,.2,.3],
        [1.1,1.2,1.3],
        [2.1,2.2,2.3],
        [3.1,3.2,3.3]])
b=torch.LongTensor([[1,2,1],
          [2,2,2],
          [2,2,2],
          [1,1,0]])
b=b.view(4,3) 
print(a.gather(1,b))
print(a.gather(0,b))
c=torch.LongTensor([1,2,0,1])
c=c.view(4,1)
print(a.gather(1,c))

输出:

tensor([[ 0.2000, 0.3000, 0.2000],
    [ 1.3000, 1.3000, 1.3000],
    [ 2.3000, 2.3000, 2.3000],
    [ 3.2000, 3.2000, 3.1000]])
tensor([[ 1.1000, 2.2000, 1.3000],
    [ 2.1000, 2.2000, 2.3000],
    [ 2.1000, 2.2000, 2.3000],
    [ 1.1000, 1.2000, 0.3000]])
tensor([[ 0.2000],
    [ 1.3000],
    [ 2.1000],
    [ 3.2000]])

squeeze

将维度为1的压缩掉。如size为(3,1,1,2),压缩之后为(3,2)

import torch
a=torch.randn(2,1,1,3)
print(a)
print(a.squeeze())

输出:

tensor([[[[-0.2320, 0.9513, 1.1613]]],
    [[[ 0.0901, 0.9613, -0.9344]]]])
tensor([[-0.2320, 0.9513, 1.1613],
    [ 0.0901, 0.9613, -0.9344]])

expand

扩展某个size为1的维度。如(2,2,1)扩展为(2,2,3)

import torch
x=torch.randn(2,2,1)
print(x)
y=x.expand(2,2,3)
print(y)

输出:

tensor([[[ 0.0608],
     [ 2.2106]],
 
    [[-1.9287],
     [ 0.8748]]])
tensor([[[ 0.0608, 0.0608, 0.0608],
     [ 2.2106, 2.2106, 2.2106]],
 
    [[-1.9287, -1.9287, -1.9287],
     [ 0.8748, 0.8748, 0.8748]]])

sum

size为(m,n,d)的张量,dim=1时,输出为size为(m,d)的张量

import torch
a=torch.tensor([[[1,2,3],[4,8,12]],[[1,2,3],[4,8,12]]])
print(a.sum())
print(a.sum(dim=1))

输出:

tensor(60)
tensor([[ 5, 10, 15],
    [ 5, 10, 15]])

contiguous

返回一个内存为连续的张量,如本身就是连续的,返回它自己。一般用在view()函数之前,因为view()要求调用张量是连续的。

可以通过is_contiguous查看张量内存是否连续。

import torch
a=torch.tensor([[[1,2,3],[4,8,12]],[[1,2,3],[4,8,12]]])
print(a.is_contiguous) 
print(a.contiguous().view(4,3))

输出:

<built-in method is_contiguous of Tensor object at 0x7f4b5e35afa0>
tensor([[ 1,  2,  3],
    [ 4,  8, 12],
    [ 1,  2,  3],
    [ 4,  8, 12]])

softmax

假设数组V有C个元素。对其进行softmax等价于将V的每个元素的指数除以所有元素的指数之和。这会使值落在区间(0,1)上,并且和为1。

import torch
import torch.nn.functional as F 
a=torch.tensor([[1.,1],[2,1],[3,1],[1,2],[1,3]])
b=F.softmax(a,dim=1)
print(b)

输出:

tensor([[ 0.5000, 0.5000],
    [ 0.7311, 0.2689],
    [ 0.8808, 0.1192],
    [ 0.2689, 0.7311],
    [ 0.1192, 0.8808]])

max

返回最大值,或指定维度的最大值以及index

import torch
a=torch.tensor([[.1,.2,.3],
        [1.1,1.2,1.3],
        [2.1,2.2,2.3],
        [3.1,3.2,3.3]])
print(a.max(dim=1))
print(a.max())

输出:

(tensor([ 0.3000, 1.3000, 2.3000, 3.3000]), tensor([ 2, 2, 2, 2]))
tensor(3.3000)

argmax

返回最大值的index

import torch
a=torch.tensor([[.1,.2,.3],
        [1.1,1.2,1.3],
        [2.1,2.2,2.3],
        [3.1,3.2,3.3]])
print(a.argmax(dim=1))
print(a.argmax())

输出:

tensor([ 2, 2, 2, 2])
tensor(11)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • 如何在Win10系统使用Python3连接Hive

    如何在Win10系统使用Python3连接Hive

    这篇文章主要介绍了如何在Win10系统使用Python3连接Hive,帮助大家更好的利用python读取数据,进行探索、分析和挖掘工作。感兴趣的朋友可以了解下
    2020-10-10
  • python OpenCV学习笔记直方图反向投影的实现

    python OpenCV学习笔记直方图反向投影的实现

    这篇文章主要介绍了python OpenCV学习笔记直方图反向投影的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • Python基于类路径字符串获取静态属性

    Python基于类路径字符串获取静态属性

    这篇文章主要介绍了Python基于类路径字符串获取静态属性,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • python实现PID温控算法的示例代码

    python实现PID温控算法的示例代码

    PID算法是一种常用的控制算法,用于调节和稳定控制系统的输出,这篇文章主要为大家详细介绍了如何使用Python实现pid温控算法,需要的可以参考下
    2024-01-01
  • python网络编程学习笔记(五):socket的一些补充

    python网络编程学习笔记(五):socket的一些补充

    前面已经为大家介绍了python socket的一些相关知识,这里为大家补充下,方便需要的朋友
    2014-06-06
  • 在tensorflow中实现去除不足一个batch的数据

    在tensorflow中实现去除不足一个batch的数据

    今天小编就为大家分享一篇在tensorflow中实现去除不足一个batch的数据,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python正则表达式中flags参数的实例详解

    Python正则表达式中flags参数的实例详解

    正则表达式是一个很强大的字符串处理工具,几乎任何关于字符串的操作都可以使用正则表达式来完成,下面这篇文章主要给大家介绍了关于Python正则表达式中flags参数的相关资料,需要的朋友可以参考下
    2022-04-04
  • 深度剖析使用python抓取网页正文的源码

    深度剖析使用python抓取网页正文的源码

    平时打开一个网页,除了文章的正文内容,通常会有一大堆的导航,广告和其他方面的信息。本文的目的,在于说明如何从一个网页中提取出文章的正文内容,而过渡掉其他无关的的信息。
    2014-06-06
  • python通过Matplotlib绘制常见的几种图形(推荐)

    python通过Matplotlib绘制常见的几种图形(推荐)

    这篇文章主要介绍了使用matplotlib对几种常见的图形进行绘制方法的相关资料,需要的朋友可以参考下
    2021-08-08
  • Django的models中on_delete参数详解

    Django的models中on_delete参数详解

    这篇文章主要介绍了Django的models中on_delete参数详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07

最新评论