pandas多层索引的创建和取值以及排序的实现

 更新时间:2021年03月09日 08:32:47   作者:蓝小白1024  
这篇文章主要介绍了pandas多层索引的创建和取值以及排序的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

多层索引的创建

普通-多个index创建

  • 在创建数据的时候加入一个index列表,这个index列表里面是多个索引列表

Series多层索引的创建方法

import pandas as pd
s = pd.Series([1,2,3,4,5,6],index=[['张三','张三','李四','李四','王五','王五'],
                  ['期中','期末','期中','期末','期中','期末']])
# print(s)
s

张三  期中    1
    期末    2
李四  期中    3
    期末    4
王五  期中    5
    期末    6
dtype: int64

利用 numpy中的随机数

import numpy as np

data = np.random.randint(0,100,size=(6,3))
# np.random.randint(0,100,size=(6,3))是使用numpy中的随机模块random中,生成随机整数方法randint,
# 里面的参数size是指定生成6行3列的数据,并且每个数字的范围在0到100之间

data
array([[44, 66, 67],
    [82, 52, 0],
    [34, 78, 23],
    [38, 4, 43],
    [60, 62, 40],
    [57, 9, 11]])

Dataframe多层索引创建

import pandas as pd
import numpy as np

data = np.random.randint(0,100,size=(6,3))
df = pd.DataFrame(data,index=[['张三','张三','李四','李四','王五','王五'],
               ['期中','期末','期中','期末','期中','期末']],
           columns=['Java','Web','Python'])

df

Java Web Python
张三 期中 68 4 90
期末 33 63 73
李四 期中 30 13 68
期末 14 18 48
王五 期中 34 66 26
期末 89 10 35

简化创建-from_product()

import pandas as pd
import numpy as np

data = np.random.randint(0,100,size=(6,3))
names = ['张三','李四','王五']
exam = ['期中','期末']
index = pd.MultiIndex.from_product([names,exam])
df = pd.DataFrame(data,index=index,columns=['Java','Web','Python'])
# print(df)
df

Java Web Python
张三 期中 51 78 47
期末 39 53 36
李四 期中 33 60 83
期末 90 55 3
王五 期中 37 45 66
期末 6 82 71

from_product()在这个里面的列表中位置不同, 产生的索引页会不同

index = pd.MultiIndex.from_product([exam, names])
df = pd.DataFrame(data,index=index,columns=['Java','Web','Python'])
# print(df)
df

Java Web Python
期中 张三 51 78 47
李四 39 53 36
王五 33 60 83
期末 张三 90 55 3
李四 37 45 66
王五 6 82 71

from_product([exam,names])会将列表中第一个元素作为最外层索引,依次类推

多层索引的取值

获取到我们想要的数据

获取多层索引Series中的数据

创建数据

import pandas as pd
s = pd.Series([1,2,3,4,5,6],index=[['张三','张三','李四','李四','王五','王五'],
                  ['期中','期末','期中','期末','期中','期末']])
print(s)

张三  期中    1
    期末    2
李四  期中    3
    期末    4
王五  期中    5
    期末    6
dtype: int64

可以直接使用[]的方式取最外面的一个层级 s[‘张三']

s['李四']

# 注意:[]取值方式,不可直接使用最外层以外的其他层级,例如:s['期末']

期中    3
期末    4
dtype: int64

使用['外索引', '内索引'], 获取某个数据

注意:[‘张三',‘期末']他们的顺序不能变。剥洋葱原则,从外到内一层一层的剥。

s['李四', '期中'] # 李四期中分值

# 注意:['张三','期末']他们的顺序不能变。剥洋葱原则,从外到内一层一层的剥。

3

使用[]的切片,获取数据s[:,‘期中']

s[:,'期中'] # 第一个值为全部的外索引

张三    1
李四    3
王五    5
dtype: int64

使用 loc

  • loc 使用的是标签suoyin
  • iloc使用的是位置索引
# loc 使用方式与 [] 的方式基本一样

s.loc['张三']
s.loc['张三','期中']
s.loc[:,'期中']

# iloc 的取值并不会受多层索引影响,只会根据数据的位置索引进行取值, 不推荐

张三    1
李四    3
王五    5
dtype: int64

多层索引DataFrame的取值

在对多层索引DataFrame的取值是,推荐使用 loc() 函数

import pandas as pd
import numpy as np
#size参数是指定生成6行3列的数组
data = np.random.randint(0,100,size=(6,3))
names = ['张三','李四','王五']
exam = ['期中','期末']
index = pd.MultiIndex.from_product([names,exam])
df = pd.DataFrame(data,index=index,columns=['Java','Web','Python'])
df

Java Web Python
张三 期中 3 40 52
期末 74 38 85
李四 期中 7 28 16
期末 9 25 0
王五 期中 13 24 8
期末 49 46 1

三种方式都可以获取张三期中各科成绩

# df.loc['张三','期中']
# df.loc['张三'].loc['期中']
# df.loc[('张三','期中')]

注意:DataFrame中对行索引的时候和Series有一个同样的注意点,就是无法直接对二级索引直接进行索引,必须让二级索引变成一级索引后才能对其进行索引

多层索引的排序

  • 使用sort_index() 排序
  • level参数可以指定是否按照指定的层级进行排列
  • 第一层索引值为0, 第二层索引的值为1

创建数据

import pandas as pd
data = np.random.randint(0,100,size=(9,3))
key1 = ['b','c','a']
key2 = [2,1,3]
index = pd.MultiIndex.from_product([key1,key2])
df = pd.DataFrame(data,index=index,columns=['Java','Web','Python'])

df 

Java Web Python
b 2 56 82 81
1 84 16 55
3 35 25 86
c 2 76 1 76
1 36 28 94
3 79 70 97
a 2 25 17 30
1 38 38 78
3 41 75 90

排序

  • DataFrame按行索引排序的方法是sort_index()
  • 如果直接使用的话,不传参数, 会把每一层索引根据值进行升序排序
df.sort_index()

Java Web Python
a 1 18 60 74
2 66 87 27
3 96 18 64
b 1 72 58 52
2 22 31 22
3 31 12 83
c 1 6 54 96
2 9 47 18
3 31 63 4

# 当level=0时,ascending=False, 会根据第一层索引值进行降序排序
df.sort_index(level=0,ascending=False)

Java Web Python
c 3 79 70 97
2 76 1 76
1 36 28 94
b 3 35 25 86
2 56 82 81
1 84 16 55
a 3 41 75 90
2 25 17 30
1 38 38 78

# 当level=1时,会根据第二层索引值进行降序排序

df.sort_index(level=1,ascending=False)

# 数据会根据第二层索引值进行相应的降序排列,
# 如果索引值相同时会根据其他层索引值排列

Java Web Python
c 3 79 70 97
b 3 35 25 86
a 3 41 75 90
c 2 76 1 76
b 2 56 82 81
a 2 25 17 30
c 1 36 28 94
b 1 84 16 55
a 1 38 38 78

通过level设置排序的索引层级,其他层索引也会根据其排序规则进行排序

到此这篇关于pandas多层索引的创建和取值以及排序的实现的文章就介绍到这了,更多相关pandas多层索引内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python面向对象总结及类与正则表达式详解

    Python面向对象总结及类与正则表达式详解

    Python中的类提供了面向对象编程的所有基本功能:类的继承机制允许多个基类,派生类可以覆盖基类中的任何方法,方法中可以调用基类中的同名方法。这篇文章主要介绍了Python面向对象总结及类与正则表达式 ,需要的朋友可以参考下
    2019-04-04
  • Python代码缩进和测试模块示例详解

    Python代码缩进和测试模块示例详解

    这篇文章主要给大家介绍了关于Python代码缩进和测试模块的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-05-05
  • pandas按某列降序的实现

    pandas按某列降序的实现

    本文主要介绍了pandas按某列降序的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-01-01
  • Python实现计算圆周率π的值到任意位的方法示例

    Python实现计算圆周率π的值到任意位的方法示例

    这篇文章主要介绍了Python实现计算圆周率π的值到任意位的方法,简单分析了圆周率的计算原理,并结合实例形式分析了Python计算圆周率的相关操作技巧,需要的朋友可以参考下
    2018-05-05
  • 基于Python制作一个文本翻译器

    基于Python制作一个文本翻译器

    translate非标准库是python中可以实现对多种语言进行互相翻译的库,本文就将利用这个库制作一个文本翻译器,实现中译英的功能,需要的可以参考一下
    2022-04-04
  • Python实现隐马尔可夫模型的前向后向算法的示例代码

    Python实现隐马尔可夫模型的前向后向算法的示例代码

    这篇文章主要介绍了Python实现隐马尔可夫模型的前向后向算法,本文通过实例代码给大家讲解的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • Python实现包含min函数的栈

    Python实现包含min函数的栈

    这篇文章主要介绍了Python实现包含min函数的栈,可实现栈中元素的计算及进栈出栈等操作,需要的朋友可以参考下
    2016-04-04
  • python Tkinter实例详解

    python Tkinter实例详解

    tkinter(Tk interface)是Python的标准GUl库,支持跨平台的GUl程序开发。tkinter适合小型的GUl程序编写,也特别适合初学者学习GUl编程,这篇文章主要介绍了python Tkinter详解,需要的朋友可以参考下
    2023-03-03
  • Pytorch 如何实现常用正则化

    Pytorch 如何实现常用正则化

    这篇文章主要介绍了Pytorch 实现常用正则化的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python图形工具turtle绘制国际象棋棋盘

    python图形工具turtle绘制国际象棋棋盘

    这篇文章主要为大家详细介绍了python图形工具turtle绘制国际象棋棋盘,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05

最新评论